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1. Introduction 
During the early stages of the COVID-19 pandemic, the healthcare systems became overwhelmed due to 

the uncontrollable surge capacity and adverse effects experienced by our medical professionals. Some 

countries were able to manage the outbreak and flatten the curve successfully. However, other 

countries like the U.S. and Brazil are still unable to contain the virus's spread. 

Six months ago, Albert Einstein Data4u posed a challenge on Kaggle to support hospitals in minimizing 

the risk of an overwhelmed health system and avoiding impractical testing of every COVID-19 case, 

especially in places with limited access to health services. The challenge focused on Brazil, a third-world 

country with some of the biggest and hardest-hit indigenous communities globally. It is believed that 

Brazil is not yet fully equipped to handle such a pandemic, financially and economically, as it is still 

recuperating from the destruction in the Amazon Rainforest. 

In this report, we aim to help speed-up the screening tests on arrival to hospitals by predicting the 

presence of COVID-19 among the suspected cases using Bayesian statistics. This analysis is limited to the 

lab results at point-of-presentation or patient data collected during their visit to the emergency room. 

 

2. Methodology 
 

2.1 Dataset Description 
The dataset provided by Einstein Data4u contained anonymized patient data from Hospital Israelita 

Albert Einstein in São Paulo, Brazil. It can be categorized according to the suspected cases, which 

indicated the COVID-19 test outcome, or according to the confirmed cases, which designated the 

admission to the general ward, semi-intensive, and intensive care unit. 

It covers routinely collected data from various laboratory exams commonly ordered by the doctors 

during a visit to the emergency room. The tests depend on the onset of symptoms or type of complaints, 

which include some of the following: 

• Complete Blood Count with or without differential – evaluates overall health and detects a wide 

range of disorders, including anemia, infection, and leukemia 

• Immuno-Serological test – evaluates the performance of commercial antibody tests and detects 

any infections in the body 

• Complete or Basic Metabolic Panel – assesses organ dysfunction, measures sugar level, kidney 

function, and electrolyte and fluid balance 

• Blood Gas Analysis (Arterial or Peripheral Venous) – determines the acidity of the blood, 

indicating the presence of certain medical conditions such as kidney, heart, or lung failure 

• Urinalysis – detects disorders such as urinary tract infections, kidney disease, and diabetes 

The tests are not mandatory but may help detect the possibility of a favourable or unfavourable COVID-

19 prognosis. The data also comprised the patient age quantile from 0 to 19, with the youngest patients 

at the lower end of the spectrum opposite the older patients at the higher end of the spectrum. 
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2.2 Dataset Specification 
Medical literature published on medRxiv, a preprint server for health sciences, suggested that features 

routinely collected on presentation were most predictive of COVID-19 (Soltan et al., 2020). The clinical 

parameters encompassed complete blood count with differential, complete metabolic panel, blood gas, 

and vital signs all collected within one hour of presentation at the emergency room. An additional 

clinical journal from the Royal College of Physicians expressly implied that complete blood count has a 

high probability of identifying patients positive for SARS-COV-2. Information on this journal also 

mentioned that mean corpuscular volume, age, platelets, and eosinophils gave the highest contribution 

to a COVID-19 positive outcome (Formica et al., 2020). 

Given the aim of this analysis, the dependent variable (y) focused only on the suspected cases, whether 

a patient is COVID-19 positive or negative. Age and complete blood count with differential measures 

were assigned as the predictor or independent variables (xi): 

• Red Blood Cells (RBC) – Hematocrit, Hemoglobin, Red Blood Cell Distribution Width, Red Blood 

Cell Count, Mean Corpuscular Hemoglobin, Mean Corpuscular Hemoglobin Concentration, Mean 

Corpuscular Volume 

• White Blood Cells (WBC) – Leukocytes, Lymphocytes, Basophils, Eosinophils, Monocytes. Note 

that Neutrophils were excluded as there were inconsistencies with the collection and 

measurements on mature and immature neutrophils. 

• Platelets – Platelets, Mean Platelet Volume 

 

2.3 Data Preprocessing 
When patients were asked to take a complete blood count test with differential, all the clinical 

parameters were analyzed, and all the results were provided accordingly. However, the dataset had 

missing values, most likely due to data entry or extraction. As the missing values were below 5%, the 

decision was to delete it. The final dataset now has a total sample size of n = 598 patients, containing 

one dependent variable and 15 independent variables discussed in Section 2.2. 

According to Einstein Data4u, all clinical data were standardized to have a mean of zero and a unit 

standard deviation (“Diagnosis of COVID-19 and Its Clinical Spectrum”, 2020). Therefore, no additional 

transformation was conducted. 

 

2.4 Approach to Bayesian Statistics 
a) Data Analysis:  
i. We studied the descriptive statistics of the sampled data set. The summary of the data has been 

mentioned in Table 2.  

ii. We studied the correlation of the chosen predictors and found that some 3 variables had a high 

correlation and decided to drop those variables. The Correlation matrix is shown in Table 3.  

iii. We have studied the scatter plot to give a fair idea of the nature of the outcome of the test 

result, depending on the values of the hematology tests.  

b) Choosing Model: We decided to choose Logistic Regression for Binary Classification as we want to 
predict the outcome of the test of the patient being positive or negative depending on the complete 
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blood count test. Binary variables were assigned as Positive = 1, Negative = 0 . We have also taken 
into consideration the outcome of the tests on different groups of age quantile and did our analysis 
using hierarchical modelling. 
 

c) Logistic Regression: 
i. Splitting Train and Test Data: As the data has a highly imbalanced class, stratified sampling was 

used to split data into train and test based on 70:30 ratio.  

ii. Implement Logistic Regression: Fit model on train data with non-informative priors with the 12 

betas and guess. Guess was used for robustness in taking care of outliers and small values. 

iii. Analysis of Logistic Runs: Check posterior distributions of a logistic regression model. In the 

Bayesian estimates, some betas are capturing 0 within HDI interval. Performance of the chains 

were analysed using accuracy and predictive checks.  

iv. Model Comparison: 4 models are proposed for our findings considering different aspects of 

intercept and betas and analysed their respective predictive checks. Finally, we chose the best 

model, which was model 4 in this case, to reach our conclusions.  

 

d) Hierarchical Modelling: 

i. Group Data : We have grouped the data into 4-age quantile groups present in the data set. The 

4 groups contain a group of 5 age quantiles, and each group accounts for 25 percent of the total 

data. We also discussed the properties of each quantile with respect to their test results. 

ii. Implement Hierarchical Model: We defined the model with Bernoulli distribution and non-

informative priors for MCMC analysis. 

iii. Analysis of Hierarchical Runs: We analysed the posterior distributions of all the age quantile 

groups followed by their sensitivity analysis to reach our findings and conclusion. 
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3. Descriptive Statistics 
 

3.1 Summary Statistics 
 

Table 1: Count and Proportion of SARS COV2 Test Result 

SARS Cov2 exam result Positive Negative 

Count 81 517 

Proportion 0.1354 0.8646 

 

Table 2: Summary Statistics (Independent Variables) 

 

From the 598 records of the patients, 81 of the patients have tested positive for SARS-COV-2, which 

account for 13.54%, while 517 have tested negative, which account for 86.46%. 

 

The following are the interpretations for each of the variable in the Complete Blood Count test results: 

i) Hematocrit is the volume percentage of RBC. It has a standard deviation of around 1 and ranges 

from -4.501 to 2.663 in the dataset. 

ii) Hemoglobin is the protein that carries oxygen to the blood. It almost has the same range of reading 

as hematocrit. 

iii) Platelets are tiny blood cells that help the body to stop bleeding. They have median of -0.1092 and 

kurtosis of 13.714, which means that the data have heavier tails and are more concentrated around 

the mean than a normal distribution. 

iv) Mean Platelet Volume (MPV) is a machine-calculated measurement of the average size of platelets 

found in blood and is typically included in blood tests as part of the CBC. The mean of this variable 

is very low as -1.78E-05, whereas the median is about -0.1015. 

v) Red Blood Cells give information on the hemoglobin content and the size of RBC. The median of the 

RBC is about 0.013852. 
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vi) Lymphocytes are WBC, and also one of the body's main types of immune cells. It has a very low 

mean of -0.00082 and a median of -0.01427. 

vii) Mean Corpuscular Hemoglobin Concentration (MCHC) is a measure of the concentration of 

hemoglobin in each volume of a packed red blood cell. It is calculated by dividing the hemoglobin 

by the hematocrit. The median of this variable is -0.0546. 

viii) Leukocytes are the cells of the immune system involved in protecting the body against both 

infectious disease and foreign invaders. It has a low mean of 0.006673 and a median of -0.2087.  

ix) Basophils are white blood cells from the bone marrow that play a role in keeping the immune 

system functioning correctly. It has a high kurtosis of 24.674, which indicates a heavy-tailed 

distribution. 

x) Mean Corpuscular Hemoglobin (MCH) is the average mass of hemoglobin per red blood cell in a 

sample of blood. It has a median of 0.1259. 

xi) Eosinophil is a type of disease-fighting white blood cell. This condition most often indicates a 

parasitic infection, an allergic reaction, or cancer. The mean of its measurement is 0.003968 and 

has a leptokurtic distribution (i.e., kurtosis statistic of 12.904). 

xii) Mean corpuscular volume (MCV) measures the average size and volume of RBC. The median of the 

measurement is 0.021765.  

xiii) Monocyte is a type of leukocyte or white blood cell. As a part of the vertebrate innate immune 

system, monocytes also influence the process of adaptive immunity. It has a median of -0.1152. 

xiv) Red Blood Cell Distribution Width (RDW) measures the amount of red blood cell variation in 

volume and size. The median of RDW is -0.1828. 

Overall, we can see that the mean and median of the parameters, except for the Age Quantile. Note that 

the variables’ standard deviation is about 1, as the dataset has already been standardized (See section 

2.3). We can say these microscopic readings of the variables need to be carefully analyzed, and we need 

a thorough understanding of the CBC terms to do Bayesian analysis. 

 

3.2 Correlation Analysis 
Table 3: Correlation Matrix (Independent Variables) 

 



MATH2269 Applied Bayesian Statistics 

9 
 

From Table 3, we can see four variables have high multicollinearity as highlighted in red. Collinearity 

between hematocrit and hemoglobin is at 0.969, hematocrit and RBC is at 0.891, hemoglobin and RBC is 

at 0.865, and MCH and MCV is at 0.884. As a result, hematocrit, RBC Count, and MCV were removed to 

minimize the effects on the standard errors and precision of the regression coefficient models. 

 

3.3 Scatter Plots 
The value of zero on the y-axis corresponds to a negative outcome of the result, while 1 corresponds to 

a positive outcome. 

 

 

 

Figure 1: Scatter Plots of the Test Outcome against Hemoglobin, MCH, and MCHC 

It is evident that the lower values of hemoglobin, MCH, and MCHC are mostly associated with the test's 

negative outcome (Figure 1). 

 

 

Figure 2: Scatter Plots of the Test Outcome against Lymphocytes, Platelets, Eosinophils, Leukocytes, Basophils, and 
RDW 

On the contrary, it is visible from the scatter plots in Figure 2 that higher values of Lymphocytes, 

Platelets, Eosinophils, Leukocytes, Basophils, and RDW are mostly associated with the negative test 

outcome. 
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Figure 3: Scatter Plots of the Test Outcome vs. Patient Age Quantile, Monocytes, and MPV 

The scatter plots in Figure 3 suggest that the patient age quantile, monocytes, and MPV are unlikely to 

support the evidence of the patient being tested positive or negative. 

 

4. Logistic Regression 
 

4.1 Mathematical Model 
From the descriptive statistics in section 3, the dependent feature (COVID test result) has two classes—

negative and positive. Thus, Bernoulli distribution was considered a likelihood distribution.  

The mathematical of the regression model in this analysis is stated below. 

𝑌 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝜇) 

To reduce the impact of outliers on the model, an additional predictor called “guessing parameter” is 

included in the model. 

Where 𝛼 ~ 𝑑𝑏𝑒𝑡𝑎 (𝑎, 𝑏), 𝓍 are the 12 predictors, and 𝛽 are the coefficient of each predictor. 

Therefore, 

𝜇 =  𝛼 ∙ 1/2 + (1 − 𝛼)  ∙  𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 (𝛽0 +  𝛽1 𝐴𝑔𝑒 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 + 𝛽2𝐻𝑒𝑚𝑜𝑔𝑙𝑜𝑏𝑖𝑛 + 𝛽3𝑃𝑙𝑎𝑡𝑒𝑙𝑒𝑡𝑠 
+ 𝛽4𝑀𝑒𝑎𝑛 𝑝𝑙𝑎𝑡𝑒𝑙𝑒𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 +  𝛽5𝐿𝑦𝑚𝑝ℎ𝑜𝑐𝑦𝑡𝑒𝑠 +  𝛽6𝑀𝐶𝐻𝐶 + 𝛽7𝐿𝑒𝑢𝑘𝑜𝑐𝑦𝑡𝑒𝑠 
+  𝛽8𝐵𝑎𝑠𝑜𝑝ℎ𝑖𝑙𝑠 +  𝛽9 𝑀𝐶𝐻 +  𝛽10𝐸𝑜𝑠𝑖𝑛𝑜𝑝ℎ𝑖𝑙𝑠 + 𝛽11𝑀𝑜𝑛𝑜𝑐𝑦𝑡𝑒𝑠 +  𝛽12𝑅𝐷𝑊 

𝜇 =  𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 (𝛽0 + 𝛽1𝓍1 +  𝛽2𝓍2+ . . . +𝛽𝑘 𝓍𝑘) 
 

 

𝜇 = 𝛼 ∙ 1/2 + (1 − 𝛼)  ∙  𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 (𝛽0 +  𝛽1𝓍1 + 𝛽2𝓍2+ . . . +𝛽𝑘 𝓍𝑘) 
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4.2 Specification of the Prior Distribution  

4.2.1 JAGS Model Diagram 
JAGS model diagrams below explain the hierarchical model of this Bayesian logistic regression. As shown 

in Figure 4, the diagrams themselves are self-explanatory. The data is distributed Bernoulli with the 

success probability 𝜇𝑖  for ith object. The 𝜇𝑖  equal to logistic regression model 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 (𝛽0 +  Σ𝑗𝛽𝑗𝓍𝑗),  

each beta parameter has a normal distribution, and guess parameter has a beta distribution. 

  

Figure 4: JAGS Model Diagram for Logistic Regression 

 

4.2.2 Prior Information 
For every independent variable, we used the values given as the mean and chose values of variance to 

reflect the degree of belief as given above. There is “no expert knowledge” on each independent 

variable and intercept, the variance of prior distributions was determined to be a big value to have 

distribution a dispersed one. We selected 0 and 4 as mean and variance, respectively, to make its 

distribution less concentrated. 

Furthermore, there is no prior information on the guess parameter, either. Hence, the mean and 

variance were specified at 1 and 9 of the guess parameter’s distribution to indicate a vague prior. 
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The sensitivity analysis of prior distributions of independent variables will be discussed in a section [4.6]. 

 

4.3 MCMC Settings and Diagnostic Checks 
Since there are many parameters of interest to be found, the joint priors are not conjugate. Therefore, 

we used the Markov Chain Monte Carlo (MCMC) method, with the assistance of JAGS to run the models 

in R studio to find the posterior distributions of all parameters as well as the diagnostics checking. 

Generally, there are three requirements to assess the appropriateness of MCMC diagnostics. 

• Representativeness: shrink factor is well below 1.2, desirably around 1. Chains converge by 

overlapping in the trace plots and fluctuate around the mean. Density plots and the HDI 

intervals of all chains overlap each other. 

• Accuracy: There is no significant autocorrelation. ESS is high, and MCSE is low. 

• Efficiency: Run time of running the whole MCMC procedure is checked if it is a reasonable 

duration.  

To improve the efficiency and accuracy of the MCMC process, we went straight with the parallel run. As 

the dataset contains standardized values, no scaling was needed. 

Several trials and errors were conducted to find a suitable MCMC setting to produce acceptable 

diagnostics plots of all parameters and find ways to improve efficiency. 

Starting off the run without specifying the initial list, the model could run fine. Thus, we just relied on 

MCMC to generate the initial list automatically.  

There were 4 trials in total. Table 4 is the summary of all trials with different parameters of the MCMC 

setting. 

Table 4: Summary List of Trials for Logistic Regression 

Trial 

No. 

Adapt 

Steps 
Burn-in 

# 

Chains 

Thinning 

Steps 

# Saved 

Steps 

# of 

Iterations 

Elapsed Time 

(second) 

1 1,000 1,000 3 10 1,000 3,333.33 84.06  
2 1,000 1,000 3 20 3,000 20,000 328.49   
3 1,000 1,000 3 30 3,000 30,000 501.92   
4 1,000 1,000 3 40 3,000 40,000 751.30  

 

Trial No. 1 started with thinning steps of 10, other parameters as listed in Table 4. It ran on the full 

dataset, and the process took only 84.06 seconds to run and resulted in undesirable diagnostic plots of 

all parameters. Diagnostic plots of beta0 and beta1 parameters were the most problematic (See Figure 

5). The shrink factor of beta0 started at 1.15, which is a bit of a concern, but it went down to 1 in later 

iterations. In comparison, the shrink factor of beta1 is good as it fluctuates around 1. Trace plot of both 

betas fluctuates around the mean, but the chains do not converge very well. More importantly, there 

were still some high autocorrelations, especially in beta0.  
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Figure 5: Diagnostics Plots of beta0 and beta1 in Trial No. 1 

The diagnostics plots of other parameters were better than these two betas (see Appendix A). However, 

since the diagnostics of these two betas did not meet the requirement, we increased the number of 

saved steps to 3000, hoping to improve the shrink factor further, and increased the number of thin steps 

to 20 to get rid of the autocorrelation in Trial No. 2. It took 328.49 seconds, about 4 times longer than 

Trial No.1 

 

Figure 6: Diagnostics Plots of beta0 and beta1 in Trial No. 2 

As noticed in Figure 6, the result of diagnostics had improved. The shrink factor of beta0 went to around 

1 and was not seen anywhere near 1.2; hence, it was no longer a concern. However, we still could see 

some high significant correlations, which is higher than 0.2 there. To further improve the 

autocorrelation, we increased the thin steps to 30 in Trial No. 3.  
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Trial No. 3 ran for 501.92 seconds (8.36 minutes), and the results show that the autocorrelation of both 

parameters went down to below 0.2. It was optimistic that we could get rid of high autocorrelation 

entirely if we keep increasing the thinning steps. Therefore, we decided to set the number of thinning 

steps at 40 in Trial No. 4.  

 

Figure 7: Diagnostics Plots of beta0 and beta1 in Trial No. 3 

As a result, diagnostics of all parameters passed the requirements with the MCMC settings of this trial. 

The diagnostic plots of all parameters are illustrated in Figure 8 (See pages 14-16). In summary: 

• The shrink factor is well below 1.2, suggesting the chains are fully converged. The three chains 

are superimposed and fluctuate around the mean in the trace plots, which indicates 

representativeness. 

• Additionally, the density plots of the three chains are overlapping each other very well, while 

the 95% HDI is slightly different for each chain yet acceptable. These results signify the chains 

are producing representative values for the posterior distributions. 

• The autocorrelation plots show no significant autocorrelation. The Effective Sample Size (ESS) 

are all over 2,500, which is acceptable. 

• Monte Carlo Standard Error (MCSE) resulted in very small values (less than 1 and close to 0), so 

we can infer the accuracy of the parameter values. 

• The elapsed time of Trial No. 4 is 751.30 seconds (approx. 13mns), which is not too long. 
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Figure 8: Diagnostics Plots of All Parameters in Trial No. 4 
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Figure 8: Diagnostics Plots of All Parameters in Trial No. 4, continued 
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4.4 Posterior Distributions 
After the MCMC diagnostics of all parameters have been validated, we got the Bayesian estimate of all 

parameters with 95% HDI intervals as follows.  

Figure 9: Posterior Distributions of All Parameters of Logistic Regression 
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Table 5: Bayesian Parameter Estimates for Logistic Regression Model 

 

Table 5 summarizes the parameter estimates. It is worth to mention that all parameters are in the unit of 

a standardized scale. The corresponding interpretations are explained below: 

Significant coefficients were observed for the following variables: Intercept (β0), Patient age quantile 

(β1),  Hemoglobin (β2), Platelets (β3), Leukocytes (β7), Basophils (β8), MCH (β9), Eosinophils (β10), and 

RDW (β12). The model coefficients are far from 0 or HDIs include 0, but far from the mid-point. 

• Intercept (β0) has a mode of -4.48; its 95% HDI limits does not capture 0.  

• Patient age quantile (β1) has a mode of 0.0984; its 95% HDI limit includes 0 on the edge, but 

99.5% of the values are bigger than 0. The results of β1 suggest that a unit increase of patient 

age quantile increases the odds of a COVID-19 positive outcome by 1.1 times. 

• Hemoglobin (β2) has a mode of 0.659; its 95% HDI limit also captures 0 on the edge. The results 

of β2 indicate that a unit increase in Hemoglobin increases the odds by 1.93 times. Across all 

variables, Hemoglobin has the highest effect on increasing the odds of a COVID-19 positive 

outcome as indicated in the cell highlighted in yellow. 

• Platelets (β3) has a mode of -0.3949; its 95% HDI limit includes 0 but not in the middle. The 

results of β3 highlight that a unit increase of Platelets increases the odds of a COVID-19 negative 

outcome by 0.67 times. 

• Leukocytes (β7) has a mode of -1.91; its 95% HDI limit does not capture 0. A unit increase in 

Leukocytes increases the odds of getting a negative result by 6.76 as indicated in the cell 

highlighted in blue. Therefore, Leukocytes has the highest effect on increasing odds of a 

negative result. 

• Basophils (β8) has a mode of -0.154; its 95% HDI limit includes 0 but not in the middle. A unit 

increase of Basophils increases the odds of a COVID-19 positive outcome by 0.85 times. 

• MCH (β9) has a mode of -0.316; its 95% HDI limit includes 0 but not in the middle. A unit 

increase of MCH increases the odds of a COVID-19 positive outcome by 0.73 times. 

Parameters Mean Median Mode Exp(Mode) 1/Exp(Mode) HDIlow HDIhigh 

beta0 -4.62141 -4.56881 -4.4847 
  

-6.00946 -3.34039 

beta[1] 0.097678 0.09736 0.0984 1.1034072 0.906283754 0.021672 0.177681 

beta[2] 0.695636 0.684406 0.6586 1.9321552 0.517556776 0.193605 1.26356 

beta[3] -0.48811 -0.46772 -0.3949 0.6737791 1.484165853 -1.2913 0.201292 

beta[4] 0.059872 0.062257 0.1217 1.1294605 0.88537844 -0.33843 0.443931 

beta[5] -0.13151 -0.13606 -0.0959 0.9085925 1.100603447 -0.61975 0.33357 

beta[6] -0.16746 -0.17066 -0.1954 0.8225257 1.215767496 -0.66214 0.320641 

beta[7] -1.88999 -1.88313 -1.9110 0.147929 6.759998143 -2.83571 -1.01754 

beta[8] -0.24316 -0.22261 -0.1539 0.8573208 1.166424579 -0.75213 0.227366 

beta[9] -0.33619 -0.32655 -0.3163 0.7288682 1.371990206 -0.93298 0.172806 

beta[10] -1.21831 -1.18098 -1.1775 0.3080442 3.246287847 -2.10975 -0.3435 

beta[11] 0.049595 0.051844 0.0463 1.0474004 0.954744746 -0.31625 0.377692 

beta[12] -0.3298 -0.31842 -0.2940 0.7452852 1.341768149 -0.86186 0.193736 
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• Eosinophils (β10) has a mode of -1.18; its 95% HDI limit does not capture 0. A unit increase in 

Eosinophils increases the odds of getting a negative result as indicated in the cell highlighted in 

green. It is the second highest, which gives an increase of 3.25 in odds for a unit increase. 

• RDW (β12) has a mode of -0.294; its 95% HDI limit includes 0 but not in the middle. A unit 

increase of MCH increases the odds of a COVID-19 positive outcome by 0.75 times. 

 

Meanwhile, insignificant coefficients were noted for Mean Platelet Volume (β4), Lymphocytes (β5), 

MCHC (β6), and Monocytes (β11). 

• Mean platelet volume (β4) has a mode of 0.122; zero is close to the middle of its 95% HDI limit.  

• Lymphocytes (β5) has a mode of -0.0959; captures zero in its 95% HDI limit, almost close to the 

middle. 

• MCHC (β6) has a mode of –0.195; captures zero in its 95% HDI limit, and relatively far from the 

edge. 

• Monocytes (β11) has a mode of 0.0463; zero is close to the middle of its 95% HDI limit. 

Lastly, the guess parameter has a mode of 0.00. It is very low, indicating that the train data does not 

have many outliers. 

Overall, there are 9 significant coefficients and 4 insignificant coefficients in the dataset. Of the 9 

significant coefficients, Hemoglobin (β2) has the highest impact on increasing the odds of a COVID-19 

positive test outcome. In contrast, Leukocytes (β7) and Eosinophils (β10) have the highest effects on 

increasing the odds of a COVID-19 negative test outcome. 

 

4.5 Predictive Check 
Since the dependent variable of the regression model is highly imbalanced, the predictive check was 

conducted using AUC and accuracy metrics. For the different threshold probabilities, AUC and accuracy 

metrics have been obtained, and this is shown in Table 6. We obtained the highest AUC when the 

threshold is set to 0.2 and we obtained the highest accuracy when the threshold is set to 0.5. 

Figure 10 showcases the confusion matrices for the threshold probabilities 0.2 and 0.5. It is interesting to 

note that the threshold probability with highest AUC predicted 18 out of 24 positive cases, and 

threshold probability with highest accuracy predicted 154 out of 155 negative cases. Overall, from these 

confusion matrices, it can be said that threshold probability of 0.2 is better at predicting positive cases; 

similarly, threshold probability of 0.5 is better at predicting negative cases. 
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Table 6: AUC and Accuracy Metrics for Different Threshold Probabilities 

Threshold AUC Accuracy 

0.1 0.78293 0.776536 

0.15 0.797581 0.832402 

0.2 0.820161 0.871508 

0.25 0.80578 0.877095 

0.3 0.770565 0.877095 

0.35 0.783468 0.899441 

0.4 0.793145 0.916201 

0.45 0.761156 0.921788 

0.5 0.725941 0.921788 

0.55 0.705108 0.916201 

0.6 0.666667 0.910615 

0.65 0.645833 0.905028 

0.7 0.604167 0.893855 

0.75 0.5625 0.882682 

0.8 0.5625 0.882682 

0.85 0.541667 0.877095 

0.9 0 0 

0.95 0 0 

 

 

 

 

Figure 10:(Left) Confusion Matrix for Threshold Probability of 0.2 and (Right) Confusion Matrix for Threshold 
Probability of 0.5 
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4.6 Sensitivity Analysis 
In this section, we are investigating the impact on the logistic regression model when different values 

are applied to prior variances of β parameters. 

First, to make it more informative, we adjusted β1 prior variance to 0.0001, while holding the remaining 

β prior variances constant at 4 and obtained the β1 estimated value. 

Then, we adjusted β2 prior variance to 0.0001 while keeping the remaining β prior variances at 4 and 

obtained the estimated value for β2. 

For all the β ‘s, the above steps were iterated, and we obtained their estimated values. 

The above-mentioned scenarios are shown in Table 7. 

 

Table 7: Different Scenarios for Sensitivity Analysis 

  Prior Variances of  
  beta[1] beta[2] beta[3] beta[4] beta[5] beta[6] beta[7] beta[8] beta[9] beta[10] beta[11] beta[12] 

Trial 1 0.0001 4 4 4 4 4 4 4 4 4 4 4 

Trial 2 4 0.0001 4 4 4 4 4 4 4 4 4 4 

Trial 3 4 4 0.0001 4 4 4 4 4 4 4 4 4 

Trial 4 4 4 4 0.0001 4 4 4 4 4 4 4 4 

Trial 5 4 4 4 4 0.0001 4 4 4 4 4 4 4 

Trial 6 4 4 4 4 4 0.0001 4 4 4 4 4 4 

Trial 7 4 4 4 4 4 4 0.0001 4 4 4 4 4 

Trial 8 4 4 4 4 4 4 4 0.0001 4 4 4 4 

Trial 9 4 4 4 4 4 4 4 4 0.0001 4 4 4 

Trial 10 4 4 4 4 4 4 4 4 4 0.0001 4 4 

Trial 11 4 4 4 4 4 4 4 4 4 4 0.0001 4 

Trial 12 4 4 4 4 4 4 4 4 4 4 4 0.0001 

 

First, let's look at trial 1, refer to Figure 11, setting β1  prior variance to 0.0001, β1 estimate changed 

drastically from 0.0984 to 0.00681. β1 significance changed drastically too. In trial 1, β1 was considered 

to be somewhat significant (HDI interval included 0, but somewhat far from the mid-point), whereas 

using the vague prior, it was considered significant. 

β2 , β7 and β10 behave the same way as before. Significance of β4, β5, β9, and β12  decreases in trial 1, and 

significance of β3, β6, β8 and β11 increases in trial 1. 
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Figure 11: Posterior Distribution Comparison 
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The Bayesian estimates for β coefficients are shown in Table 8 for each trial. When the prior variance of a 

β is changed from 4 to 0.0001, the estimated value of that β changes drastically. In Table 8, these values 

are highlighted in yellow. 

Table 8: Estimated Beta Coefficients for the 12 Trials 

 

From the above table, we realized that the Bayesian estimate of the coefficients is altered by the 

variance of its corresponding prior in the Bayesian logistics regression model. The change of one 

coefficient would impact other coefficient values in logistic regression. Odds will change subsequently. 

The change in odds for a unit increase of β, for trial 1 is provided in Table 9 below.  

A unit increase in patient age quantile lowers the increase in odds of getting COVID-19 from 1.1 times 

(when prior variance= 4) to 1.01 times in trial 1, where the prior variance of β1 is set to 0.0001. 

A unit increase in Hemoglobin, raises the increase in odds of getting COVID-19 from 1.93 times to 2.01 

times. Therefore, the effect of Hemoglobin on increasing the odds, is increased when the prior variance 

of β1 is reduced. Similarly, the effect of Lymphocytes, Leokocytes, MCH, Eosinophils, Monocytes, and 

RDW is increased. 

The effect of Plateletes, Mean Platelet volume, MCHC, and Basophils on increasing the odds, is reduced 

when the prior variance of β1 is reduced. 

Now, for each trial, let's compare the odds of getting a positive COVID-19 result. The evaluation of the 

increase in odds for the 12 trials is provided in Table 10. 

 

 

 

 

Vague Prior Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Trial 11 Trial 12

beta[1] 0.0984 0.0068 0.0990 0.1002 0.0893 0.0889 0.0954 0.0979 0.0943 0.0876 0.0933 0.0917 0.0889

beta[2] 0.6586 0.6982 0.0026 0.6434 0.6447 0.7208 0.5885 0.6455 0.5580 0.6711 0.7017 0.7108 0.7681

beta[3] -0.3949 -0.5700 -0.4050 -0.0011 -0.5080 -0.4821 -0.3474 -1.3857 -0.4171 -0.3847 -0.5650 -0.4462 -0.4115

beta[4] 0.1217 0.0503 0.0447 0.1749 0.0012 0.0670 0.0776 0.0099 0.0591 0.1078 0.0231 0.0455 0.1285

beta[5] -0.0959 -0.0763 -0.2351 -0.2140 -0.1627 0.0006 -0.1160 0.3933 -0.1927 -0.0983 -0.3328 -0.1907 -0.1436

beta[6] -0.1954 -0.3031 0.1002 -0.1453 -0.2048 -0.1329 0.0004 -0.1100 -0.1529 -0.2899 -0.1756 -0.1844 -0.1443

beta[7] -1.911 -1.8620 -1.4734 -1.9874 -1.8425 -1.8078 -1.8053 -0.0022 -1.8367 -1.8306 -2.0931 -1.7763 -1.8332

beta[8] -0.1539 -0.2163 -0.1212 -0.1979 -0.1539 -0.1902 -0.1752 -0.1533 -0.0020 -0.2054 -0.3896 -0.1865 -0.2195

beta[9] -0.3163 -0.2408 -0.4111 -0.2490 -0.3497 -0.3103 -0.4038 -0.2935 -0.2617 -0.0002 -0.4336 -0.3177 -0.2668

beta[10] -1.1775 -1.0324 -1.0713 -1.1144 -1.1038 -1.2030 -1.1472 -1.7752 -1.1629 -1.2116 -0.0021 -1.0996 -1.1598

beta[11] 0.0463 0.0559 0.0891 0.0797 0.0409 0.0603 0.0563 0.1989 0.0362 0.0953 0.0038 0.0013 0.0436

beta[12] -0.294 -0.2190 -0.5196 -0.2156 -0.2786 -0.2401 -0.2715 -0.3204 -0.3625 -0.2242 -0.3010 -0.2873 -0.0020
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Table 9: Comparison of the Odds 

  
Vague 
Prior 

Exp(mode) 
for vague 
prior Trial 1 

Exp(mode) 
for Trial 1 

beta[1] 0.0984 1.1034 0.0068 1.0068 

beta[2] 0.6586 1.9321 0.6982 2.0100 

beta[3] -0.3949 0.6737 -0.5700 0.5655 

beta[4] 0.1217 1.1294 0.0503 1.0516 

beta[5] -0.0959 0.9086 -0.0763 0.9265 

beta[6] -0.1954 0.8225 -0.3031 0.7385 

beta[7] -1.9110 0.1479 -1.8620 0.1554 

beta[8] -0.1539 0.8574 -0.2163 0.8055 

beta[9] -0.3163 0.7288 -0.2408 0.7860 

beta[10] -1.1775 0.3080 -1.0324 0.3562 

beta[11] 0.0463 1.0474 0.0559 1.0575 

beta[12] -0.2940 0.7453 -0.2190 0.8033 
 

Table 10: Comparison of the Increase in Odds for the 12 trials 

Trial Parameters 

Prior Variance 
0.0001 

Prior Variance 
4 

Exp(Mode) Exp(Mode) 

Trial 1 beta[1] 1.0068 1.1034 

Trial 2 beta[2] 1.0026 1.9322 

Trial 3 beta[3] 0.9989 0.6738 

Trial 4 beta[4] 1.0012 1.1295 

Trial 5 beta[5] 1.0006 0.9086 

Trial 6 beta[6] 1.0004 0.8225 

Trial 7 beta[7] 0.9978 0.1479 

Trial 8 beta[8] 0.9980 0.8573 

Trial 9 beta[9] 0.9998 0.7289 

Trial 10 beta[10] 0.9979 0.3080 

Trial 11 beta[11] 1.0013 1.0474 

Trial 12 beta[12] 0.9980 0.7453 

The above table can be interpreted as follows: 

• Effect of β2 in Trial 2 → The effect of Hemoglobin in the odds of getting COVID-19 is reduced 

(Increase in odds of getting COVID-19 reduced from 1.93 to 1.002). 

• Effect of β3 in Trial 3 → The effect of Plateletes in the odds of getting COVID-19 is increased. 

(Increase in odds of getting COVID-19 increased from 0.674 to 0.999). 

• Effect of Mean platelet volume and Monocytes reduced for Trial 4 and Trial 11, respectively.  

• Effect of Lymphocytes, MCHC, Leukocytes, Basophiles, MCH, Eosinophiles and RDW increased 

for Trials 5, 6, 7, 8, 9,10 and 12 respectively. 
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Now let’s look at the threshold probabilities and best AUC and accuracy metrics for the 12 trials. 

Table 11: Threshold probabilities with best AUC and Accuracy metrics for the 12 trials 

 

Table 12: Best AUC and Accuracy metrics for the 12 trials 

 

From Table 12, we can see that trial 2, trial 3, and trial 8 have the best AUC value (0.8234), and it is an 

improvement from 0.8202 (refers to Table 6) , and trial 2, trial 3, trial 6, and trial 9 have the best 

accuracy metric (0.9274), which is an improvement from 0.9218 (refer to Table 6). 

  

  

  

 

   

Figure 12 showcases the confusion matrices we obtained for the best AUC values. It is important to note 

that trials 2 and 3 predicted 142 out of 155 negative cases in the test data, which means that the 

possibility of correctly identifying the negative cases increases when you change the prior variance of β2 

or β3 from 4 to 0.0001, and setting the threshold probability at 0.2. 

The logistic regression model with vague priors for β parameters is better at predicting the positive 

cases of COVID-19 in the test data, at threshold probability 0.2. 

 

 

 

  

 

Figure 13 showcases the confusion matrices we obtained for the best accuracy values. It is interesting to 

note that Trials 2,3 and 6 predicted 15 out of 24 positive cases in the test data, which means that the 

possibility of correctly identifying the positive cases increases when you change the prior variances of 

either β2 , β3 or β6 from 4 to 0.0001, and setting the threshold probability at 0.4 . 

The logistic regression model with vague priors for β parameters is better at predicting the negative 

cases of COVID-19 in the test data, at threshold probability 0.5. 

  

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Trial 11 Trial 12

Threshold with best AUC 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.25 0.15 0.15 0.15

Threshold with best Accuracy 0.4 0.4 0.4 0.4 0.4 0.4 0.45 0.4 0.45 0.6 0.4 0.4

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Trial 11 Trial 12

Best AUC 0.8038 0.8234 0.8234 0.8058 0.8058 0.8137 0.8137 0.8234 0.8202 0.8199 0.8008 0.8008

Best Accuracy 0.9162 0.9274 0.9274 0.9218 0.9218 0.9274 0.9218 0.9106 0.9274 0.9050 0.9218 0.9218

Vague Prior Trial 2 & 3 Trial 8 

Figure 12: Comparison of Confusion Matrices with Best AUC Values 

Vague Prior Trials 2,3 & 6 Trial 9 

Figure 13: Comparison of Confusion Matrices with Best Accuracy Values 
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5. Hierarchical Model 
 

5.1 Mathematical Model and JAGS Diagram 
A hierarchical model can be used to analyse further the likelihood of a positive class distribution 

respective to any categorical attribute.  In our case, it would be interesting to explore the relevance of 

age in the likelihood of positive test results and observe the impact of prior information on this 

relevance with Bayesian analysis.   

Age has been classified into 20 quantiles in the given dataset.  We would further group these quantiles 

as below, such that each age group would represent 25% of the age tier: 

Table 13: Grouping of Age Quantile 

Age Quantile 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

% in each quantile 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5%

Total % in each group

Group

25% 25% 25% 25%

Age Group 1 Age Group 2 Age Group 3 Age Group 4  

The frequency count and proportion of patients in each age group with covid test results were 

distributed as shown in Table 14 and Table 15:  

Table 14:  Frequency table of Different Age Groups 

Age Group 1 Age Group 2 Age Group 3 Age Group 4 Total

0 (negative) 98 115 137 167 517

1 (positive) 3 12 32 34 81

Total 101 127 169 201 598  

 

Table 15:  Proportion table of Different Age Groups 

Age Group 1 Age Group 2 Age Group 3 Age Group 4 Total

0 (negative) 0.97030 0.90551 0.81065 0.83085 0.86455

1 (positive) 0.02970 0.09449 0.18935 0.16915 0.13545

Total 1.00000 1.00000 1.00000 1.00000 1.00000  

 

The hierarchical model can be formulated mathematically as provided below. Each equation is labelled 

from numbers 1 to 5 and are explained in detail. These then translate into the JAGS model diagram in 

Figure 14. 

 

𝑌𝑖|𝑠,𝑐  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝜃𝑠|𝑐)  

Where Yi|s,c is the test instance (i) within each patient (subject s), and age group (category c),  θs|c 

denotes the probability of being positive for the patient in his/her respective age group. ① 
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We then induced a beta prior on θs|c, which would be reparametrized with mode ωc and concentration 

κc as follows: 

 𝜃𝑠|𝑐~ 𝑑𝑏𝑒𝑡𝑎 (ω𝑐(κ𝑐 − 2) + 1, (1 −  ω𝑐)(κ𝑐 − 2) + 1)  

 

This could be read as the biases of patients (subject s) within age group (category c) are assumed to be 

distributed as a beta density with mode ωc and concentration κc.  Each Age group has its own modal bias 

of ωc, from which all patient biases in the age group are assumed to be drawn. ② 

The model assumes that all the age group modes ωc come from a higher level beta distribution that 

describes the variation across age groups.  The modal bias across age groups is denoted ω (without 

subscript), and the concentration of the age group biases is denoted κ (without subscript). ③ 

For simplicity, the age group concentration κc is also fixed by the same prior constants of κ, and do not 

mutually inform others for different age groups.  ④ 

In order to estimate ω (without subscript) and κ (without subscript), we need to specify prior settings for 

the overall positive testing probability.  ω (without subscript) can be estimated using a beta distribution, 

as the range of the modal bias is within [0, 1].   κ (without subscript) can be estimated using a gamma 

distribution, as the range of concentration is between [0, ∞). ⑤ 

As mentioned, all the above mathematical formulations can be better illustrated by the JAGS model 

diagram with its corresponding numeric symbols in Figure 14. 
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Figure 14:  JAGS Model Diagram for the Hierarchical Model 

① 

② 

③ 

④ 

⑤ 
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5.2 Prior Information  
As there is “no expert knowledge” on the probability of being positive in the test for each age group or 

the entire sampled population, we would initially set ω with a vague prior of uniform distribution 

(dbeta( 1.0 , 1.0 ), where Aω=1.0, Bω=1.0, ⑤ in the JAGS model diagram, and that is equivalent to 

Modeω = 0, Conentrationω =2). 

To set a vague prior for κ, we would set a gamma distribution with a small value of mode and board 

standard deviation (Modeκ=1, S.Dκ=100 ➔ dgamma( 1.01005 , 0.01005012 ), where Sκ (Shape of 

Kappa)= 1.01005 and R κ (Scale of Kappa)=0.01005012, as shown in ④ in the JAGS model diagram ) to 

indicate no information on how far θs|c is away from ωc. 

 

5.3 Posterior Distributions and Interpretation 
After running MCMC in JAGS (refer to the coding in [Appendix B2] ) and passing through all the 

diagnostic checks (refer to section 6.5 for further details),  we could obtain the following posterior 

distributions: 
 

 
Figure 15: Marginal Prior Distributions of Positive Probability for Different Age Groups 

Refer to Figure 15: 

1. Using the mode of the posterior distribution, the positive probability of age group 1 is estimated 

to be 0.0214, i.e. ῶage_group_1 = 0.0214, similarly, ῶage_group_2 = 0.0322, ῶage_group_3 = 0.0204, 

ῶage_group_4 = 0.0237, ῶoverall = 0.0149.  ῶage_group_2  has the highest estimated positive probability.  

2. 97.5% (since we are only counting positive distribution, 95% HDI is indicating 97.5% of the 

distribution) of the patients in age group 1 have less than 0.0688 positive probability, which is 

the lowest among all age groups.  A similar reading method applies to other age groups.  97.5% 

of the patients in each group with positive probability would go with ascending order as follows: 

Age group 1 <   Age group 2 < Age group 4  < Age group 3 

3. Age group 3 has the longest right tail while age group 1 has the shortest right tail, which 

indicates that patients in age group 1 are less likely to have a high positive probability compare 
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to age group 3.  Some patients in the age group 3 would have a positive probability higher than 

0.20.      

4. 97.5% of the patients have less than 0.0907 positive probability in ωoverall, which is higher than 

group 1, but lower than group 2, 4, and 3.      
 

 
Figure 16: Marginal Prior Distributions of the Concentration of Positive Probability for Different Age Groups 

 

Refer to Figure 16: 

1. Using the mode of the posterior distribution, the concentration of positive probability of age 

group 1 is estimated to be 33, i.e. κ͂age_group_1 = 33, similarly, κ͂age_group_2 = 13.1, κ͂age_group_3 = 5.89, 

κ͂age_group_4 = 6.19,  κ͂overall = 33.1. 

2. κ͂age_group_1 has the highest estimated value (which implies θs|c is closer to ωc  in age group 1), but 

the largest variation as compared to other age groups.  κo͂verall also has similarly high estimated 

value and high variation. (which implies θs|c is close to ωoverall, but there is a high variation) 
 

 

Figure 17: Posterior Distributions of the Positive Probability of Age Group 1-4, and the Difference of Age Group 1 vs  
Age Group 2,  Age Group 1 vs  Age Group 3,  Age Group 1 vs  Age Group 4 

Refer to Figure 17: In the top right plot of the comparison diagram between Age Group 1 vs Age Group 2, 

the HDI of the difference of ω’s plot capture 0,  27.7% of the difference of ω’s will be greater than 0, 

72.3% of the difference of ω’s will be less than 0, there might be a difference, but we are not super 
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confident in that.  A similar interpretation applies to the comparison between Age Group 1 vs Age Group 

3 and Age Group 1 vs Age Group 4.   
 

 

Figure 18: Posterior Distributions of the Positive Probability of Age Group 2-4, and Difference of Age Group 2 vs  
Age Group 3,  Age Group 2 vs  Age Group 4,  Age Group 3 vs  Age Group 4 

Refer to Figure 18: In the top-right plot of the comparison diagram between Age Group 2 vs Age Group 3, 

the HDI of the difference of ω’s plot capture 0 right in the middle of the distribution. We are confident 

to say there would be no difference of ω between Age group 2 and Age group 3.  A similar interpretation 

applies to the comparison between Age Group 2 vs Age Group 4 and Age Group 3 vs Age Group 4.   

 

5.4 Sensitivity Analysis  
In order to observe the impact of changing prior distribution on posterior distribution, we have 

performed the following different trials with different Modeω, Conentrationω,  Modeκ and S.Dκ. 

Horizontally, we would like to observe the effect of the beta distribution of Omega from non-

informative to informative(changing Conentrationω from 2 (trial 1) to 100(trial 2), while Modeω remains 

to 0) and then the effect of location change (from 0 to 0.1 and 0.5).   

Vertically, we would like to observe the effect of gamma distribution of Kappa from non-informative to 

informative(changing S.Dκ from 100 (trial 1) to 2(trial 5), while Modeκ remains to 1) and then the effect 

of location change (from 1 to 10 and 40). 

Table 16: Trials for the Sensitivity Analysis 

                                   Omega  

Kappa

dbeta( 1.0 , 1.0 ) vague

Modeω = 0, 

Conentrationω =2

Modeω = 0, 

Conentrationω = 100

Modeω = 0.1, 

Conentrationω = 100

Modeω = 0.5, 

Conentrationω = 100

Modeκ=1, S.Dκ =100 (vague) trial 1 trial 2 trial 3 trial 4

Modeκ=1, S.Dκ =2 trial 5 trial 6 trial 7 trial 8

Modeκ=10, S.Dκ =2 trial 9 trial 10 trial 11 trial 12

Modeκ=40, S.Dκ =2 trial 13 trial 14 trial 15 trial 16  

We have observed some interesting patterns, first let’s compare the posterior distribution of trial 1 

(vague prior) with trial 16 (Modeω=0.5 Conentrationω =100, would imply prior knowledge of 0.5 positive 

probability with high degree of belief; Modeκ = 40 and S.Dκ =2, would imply the prior information of  θs|c 

is closer to ωc (as compare to Modeκ =1) with high degree of belief), if we have more time to explore, we 
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would go for higher value of Modeω and Modeκ to see if there is any further difference.  As for now, 

these 2 trials would be at the extreme ends of all our trials. 

 

Figure 19: Comparison of Marginal Prior Distributions of Positive Probability for Different Age Groups (Trial 1 vs 
Trial 16) 

Refer to Figure 19: 

1. ῶage_group_1 has dropped from 0.0214 to 0.0121,  ῶage_group_2 has increased from 0.0322 to 0.0758, 

ῶage_group_3 has increased from 0.0204 to 0.166, ῶage_group_4 has increased from 0.0237 to 0.15, 

ῶoverall has increased from 0.0149 to 0.0505.  ῶ for all age groups in trial 16 would be estimated 

much closer to the proportion of the dataset (closer to likelihood) compare to trial1. ῶoverall is 

close to Modeω (which is set to 0.5) and further apart from ῶ for all age groups in trial 16.  

2. The upper limit of positive probability of 97.5% of the patients in the different age group has 

changed as below: 
 

Table 17: Comparison of the Upper Limit Of HDI (Prior Distributions Of Positive Probability) in Trial1 and Trial 16 For 
Different Age Group 

 Trial 1 Trial 16 

Age Group 1 0.0688 0.0606 

Age Group 2 0.102 0.125 

Age Group 3 0.152 0.22 

Age Group 4 0.141 0.194 

 

The order still remains the same as follows: 

Age group 1 <   Age group 2 < Age group 4  < Age group 3 

 Only Age Group 1 has gone down; all the other age groups have gone up. 

 

3. The scale of the probability axis has changed, but Age group 3 still has the longest right tail while 

age group 1 has the shortest right tail, tail of Age group 3 has extended beyond 0.3, while the 

tail of Age group 1 has stretched from less than 0.15 to over 0.2 in trial 16.      

4. In trial 1, 97.5% of the patients have less than 0.0907 positive probability in ωoverall;  In trial 16, 

95% of the patients have positive probability between 0.406 and 0.598 in ωoverall, both of these 

ranges are close to Modeω being set for the respective trial.      
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Figure 20: Comparison of Marginal Prior Distributions of the Concentration of Positive Probability for Different Age 

Groups (Trial 1 vs Trial 16) 

Refer to Figure 20: 

1. κ͂ for all age group have a small increase (except κ͂age_group_1 has slightly decreased), but variations 

have certainly increased.  

2. In trial 1, κ͂overall =33.1, while in trial 16, κ͂overall =2.02, which implies θs|c is much close to ωoverall 

(0.0149) in trial 1 compare to trial 16 (0.505), but there is a high variation in trial 1 (i.e. not all 

θs|c is close to 0.0149) and extremely low variation in trial 16 (i.e. all θs|c is far away from 0.505). 

 

Figure 21: Comparison of Trial 1 vs Trial 16 in the Posterior Distributions of the Positive Probability of Age Group 1-
4, and Difference of Age Group 1 vs  Age Group 2,  Age Group 1 vs  Age Group 3,  Age Group 1 vs  Age Group 4 
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Refer to Figure 21: In trial 16, the HDI of the difference of ω’s still capture 0 for all the top right plot (Age 
Group 1 vs all other age groups), however, the zero-compare-lines are leaning more toward the HDI 
upper limits compare to trial 1.  (In Age Group 1 vs Age Group 2,  the difference of ω’s which is greater 
than 0 has dropped from 27.7% to 17%, in Age Group 1 vs Age Group 3, has dropped from 25.9% to 
6.4%,  and in Age Group 1 vs Age Group 4, has dropped from 26% to 7.4%), thus we are more confident 
to address there would be a difference in Age Group 1 vs Age Group 3 and Age Group 1 vs Age Group 4 
in trial 16.   

 

Figure 22: Comparison of Trial 1 vs Trial 16 in the Posterior Distributions of the Positive Probability of Age Group 2-
4, and Difference of Age Group 2 vs  Age Group 3,  Age Group 2 vs  Age Group 4,  Age Group 3 vs  Age Group 4 

Refer to Figure 22: 

1) In Age Group 2 vs Age Group 3,  the difference of ω’s which is greater than 0 has dropped from 
43.6% to 19.1%, in Age Group 2 vs Age Group 4, has dropped from 43.9% to 23%, the figures 
19.1% and 23% both indicate there might be a difference between these groups, but we are not 
super confident about that.  Thus, Age Group 2 vs Age Group 3 and Age Group 2 vs Age Group 4 
have turned from confident with no difference to not super confident with the difference from 
trial 1 to trial 16. 

2) For Age Group 3 vs Age Group 4, the HDI of the difference of ω’s plot capture 0 right in the 
middle of the distribution in both trials, thus we are confident there would be no difference of ω 
between Age group 3 and Age group 4 in trial 1 and 16. 

 
So now, the question comes up: Would the distribution of  θs͂|c  (where s=patient, c=age group) be 

impacted by prior distribution?  Could this be illustrated? 
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For example, each individual patient would have his/her own posterior distribution on positive 
probability (θs|c).  Refer to Figure 23 using the mode of the posterior distribution, the positive probability 
of patient 8 is estimated to be 0.0572,  i.e. θp͂atient_8|age_group_2 = 0.0572, similarly, θ͂patient_9|age_group_3 = 0.19, 
would this be changed with different prior settings?   

 

 
Figure 23: Posterior Distributions of Positive Probability of Patient 8 and 9 in Trial 1 

It would be compulsive to see the impact of different prior settings on θp͂atient|age_group. 

Table 18: Trials for Sensitivity Analysis 

                                   Omega  

Kappa

dbeta( 1.0 , 1.0 ) vague

Modeω = 0, 

Conentrationω =2

Modeω = 0, 

Conentrationω = 100

Modeω = 0.1, 

Conentrationω = 100

Modeω = 0.5, 

Conentrationω = 100

Modeκ=1, S.Dκ =100 (vague) trial 1 trial 2 trial 3 trial 4

Modeκ=1, S.Dκ =2 trial 5 trial 6 trial 7 trial 8

Modeκ=10, S.Dκ =2 trial 9 trial 10 trial 11 trial 12

Modeκ=40, S.Dκ =2 trial 13 trial 14 trial 15 trial 16  

Refer to Table 18, using trial 1 as control, we would be comparing all the trials highlighted in blue in 

Figure 24 and comparing all the trials highlighted in orange in Figure 25 to observe the change in 

θ͂patient_9|age_group associated with the covid test result. 

Refer to Figure 24 , in trial 1, we could observe that Age Group 3 and 4 with actual positive results are far 

away from other groups.  Age Group 1 with actual negative results has low variation with low positive 

probability.  If we set the probability threshold to 0.11, we could correctly classify all the actual negative 

test results, but Age Group 1 and 2 with actual positive results would be misclassified. However, that is 

already the optimal threshold in this trial. 

In trial 2, all the settings would be the same as trial 1, except Conentrationω has increased to 100. From 

the plot, it shows that all age groups with actual negative results would shift to the lower end and the 

variations also decrease, they are becoming highly concentrated.  If we set the probability threshold to 

0.06 (the optimal threshold), we could correctly classify all the actual negative test results, and only Age 

Group 1 with actual positive results would be misclassified in this trial. 

In trial 3 and 4, all the settings would be the same as trial 2, except Modeω (location) is changed to 0.1 

and 0.5, respectively. From the plots, we could observe that age groups 2, 3, and 4 with actual negative 

results would have a higher impact on the change. These groups would shift towards the higher end of 

the axis, in trial 4, the shift for age group 3 and 4 with actual negative results is more obvious, and the 

distribution of age group 3 with negative results would overlap with age group 4 with positive results.  
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Thus, setting the probability threshold to optimal thresholds, in trial 3 (optimal at 0.15), only 1 patient in 

age group 3 with actual negative result would be misclassified, but in trial 4 (optimal at 0.18), 4 patients 

in age group 3 with actual negative result would be misclassified, and 26 (41 – 15 =26, 15 are the 

patients with negative result in age group 1 and 2) patients in age group 4 with positive results would be 

misclassified in trial 4, while no patient in age group 4 with positive results would be misclassified.   

Refer to Figure 25, in trial 5, all the settings would be the same as trial 1, except S.Dκ has gone down to 2 

(more concentrated), from the plot, it shows that age group 3 and 4 with actual negative results would 

again shift towards to the higher end, the distribution of age group 3 with negative results would 

overlap with age group 4 with positive results.  Thus misclassification of age group 3 with actual negative 

result and age group 4 with positive results would be introduced. 

In trial 9 and 13, all the settings would be the same as trial 5, except Modeκ (location) is changed to 10 

and 40, respectively.  There would be a slight change in the variations (shown from the shape of the 

density curves), but overall the distributions for trial 5, 9 and 13 are very similar. 

Thus, from Figure 24 and Figure 25, Conentrationω, S.Dκ and Modeω of prior distribution will have a high 

impact on θp͂atient|age_group, while Modeκ has lower impact in our hierarchical model. 
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Figure 24: Comparison of Probability Distribution with Different Omega Priors 

Trial 1 - Modeω=0 Conentrationω =2;  
Modeκ = 1 and S.Dκ = 100 

Trial 2 - Modeω=0 Conentrationω =100;  
Modeκ = 1 and S.Dκ = 100 

Trial 3 - Modeω=0.1 Conentrationω =100;  
Modeκ = 1 and S.Dκ = 100 

Trial 4 - Modeω=0.5 Conentrationω =100;  
Modeκ = 1 and S.Dκ = 100 

Threshold = 0.11 

Threshold = 0.06 

Threshold = 0.15 

Threshold = 0.18 
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Figure 25: Comparison of Probability Distribution with Different Kappa Priors 

Trial 1 - Modeω=0 Conentrationω =2;  
Modeκ = 1 and S.Dκ = 100 

Trial 5 - Modeω=0 Conentrationω =2;  
Modeκ = 1 and S.Dκ = 2 

Trial 9 - Modeω=0 Conentrationω =2;  
Modeκ = 10 and S.Dκ = 2 

Trial 13 - Modeω=0 Conentrationω =2;  
Modeκ = 40 and S.Dκ = 2 

Threshold = 0.18 

Threshold = 0.11 

Threshold = 0.18 

Threshold = 0.18 
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5.5 Diagnostic Check, Representativeness, Accuracy, and Efficiency   
In this section, we would thoroughly discuss how to examine good diagnostic plots of all MCMC chains 

for the hierarchical model to provide the above analysis on the posterior distributions.  Posterior 

distributions are only valid if they are from the MCMC with good diagnostic plots.  We initially started 

running JAGS with the following settings: 

Adapt Burn-in Saved steps Thinning

1000 1000 1000 10  

in our first ever attempt on the sample dataset and gradually increased to the following values for trial 1 

with vague prior. 

Adapt Burn-in Saved steps Thinning

8000 8000 12000 2000  

Figure 26 shows how the diagnostic plots have been improved from the initial settings (left) to our 

satisfactory level (right) on kappa2 as an example.   

 

Figure 26: Comparison of Diagnostic Plots of Kappa[2] (Initial Settings (left), Final Settings (right)) 

On the right (Figure 26 – Final Settings): 

1) 3 chains are all overlapping for the kappa[2] in the later iterations (top-left plot)  
2) there are almost no autocorrelations in the chains (from the top-right plot), ESS is very high, 

which implies we do not have to change the number of thinning steps.   
3) shrink factor is always less than 1.2 (lower-left plot), which implies there are no orphaned or 

stuck chains 
4) In the density plot (lower-right plot), the shape and HDI interval overlap very well.   There is no 

need to adjust any burn-in or saved steps. MCSE is relatively low. 

On the left (Figure 26 – Initial Settings): 

1) 3 chains do not overlap at all (top-left plot), which indicates we need more saved steps and 
burn-in steps,   
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2) there are high autocorrelations in the chains (from the top-right plot), ESS is extremely low, 
which implies we need to increase the number of thinning steps.   

3) shrink factor is higher than 1.2 (lower-left plot), which implies there is orphaned or stuck chains 
4) In the density plot (lower-right plot), the shape and HDI interval overlap, however MCSE is larger 

than 1. We need to adjust the burn-in or saved steps. 

We put burn-in and adapt steps to 8000 in the tuned model, as we found that some of the parameters 

have a high shrink factor until we put 8000 steps for burn-in and adapt. Autocorrelation of kappa[3] and 

kappa[4] are finally reduced when thinning reached 2000, and saved steps reached 12,000.  

With this configuration, all the parameters would have similar satisfactory diagnostic plots, however, 

JAGS took around 6 hours to run with these settings. Table 28 shows the runtime of the hierarchical 

model on the dataset.  

We found that when S.Dκ = 2, we could reduce the thinning steps to 800 and saved steps to 8,000, and 

we could still obtain satisfactory diagnostic plots.   

As the total steps being run would be multiped by the number of thinning, for example, with the 

satisfactory diagnostic plots, the total steps highlighted in yellow would be:  adaptSteps: 8000 + 

burnInSteps: 8000 + (numSavedSteps: 12000 * thinSteps: 2000) = 24,016,000 steps. 

If we reduced thinning steps to 800 and saved steps to 8,000 (highlighted in blue in Table 19) , total 

steps = 6,416,000 steps, thus we are saving 17,600,000 steps for trial 5 to 16. 

However, we have observed some of the parameters do not have good diagnostic plots when thinning 
and saved steps are specified as the row highlighted in yellow in Table 28 for trial 3 and 4 (Modeω=0.1 
or Modeω=0.5,  Conentrationω =100; Modeκ = 1 and S.Dκ = 100). We need to increased thinning to 
3,000 to get past the diagnostic checks. This inspired us to check the diagnostic plots, whenever there 
are changes in the prior settings. Refer to [Appendix  A4] for all the diagnostic plots for hierarchical 
models of trial 1. 

Table 19: Run Time of the Hierarchical Model 

adapt Burn-in Saved steps thinning user system elapsed

Total time

(in minutes)

1000 1000 1000 10 0.94 0.3 47.28 0.0131

1000 1000 1000 30 1.14 0.27 107.14 0.0298

1000 1000 1000 100 1.2 0.47 638.03 0.1772

4000 4000 4000 300 7.86 1.9 3869.28 1.0748

8000 8000 8000 600 11.98 2.5 5096.19 1.4156

8000 8000 8000 800 8.44 1.59 7746.44 2.1518

8000 8000 12000 1200 41.61 11 14916.93 4.1436

8000 8000 8000 2000 23.01 5.96 16098.68 4.4719

8000 8000 12000 2000 23.1 7.95 22330.59 6.2029

8000 8000 12000 3000 27.39 6.45 34078.08 9.4661  
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6. Summary and Conclusion 
In this project, we have used JAGS to run MCMC to perform logistic regression, model comparison, and 

apply the hierarchical model on the given dataset.   

From logistic regression, without any prior knowledge, we learned that Patient age quantile (β1),  

Hemoglobin (β2), Platelets (β3), Leukocytes (β7), Basophils (β8), MCH (β9), Eosinophils (β10), and RDW (β12) 

are significant to classify covid test results.   

Hemoglobin (β2), Platelets (β3), MCHC (β6), Basophils (β8), MCH (β9) are sensitive to prior variance in 

order to classify the test sets better. 

From the hierarchical model, age groups 3 and 4 are more sensitive to prior knowledge than age groups 

1 and 2.  The positive probability distribution of age groups 1 and 2 would become more different from 

age groups 3 and 4 if we have been informed there is a higher chance of getting the virus.      
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Appendix A: Diagnostic Plots of the Trials for the Logistic Regression and 
Hierarchical Model 
[A1] – Diagnostic plots of trial no. 1 
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[A2] – Diagnostic plots of trial no. 2 
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[A3] – Diagnostic plots of trial no. 3 
 

 



MATH2269 Applied Bayesian Statistics 

46 
 



MATH2269 Applied Bayesian Statistics 

47 
 

 

 

[A4] – Diagnostic plots of hierarchical model 
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Appendix B: R Codes 
[B1] – R codes of the Logistic Regression Model  
graphics.off() # This closes all of R's graphics windows. 
rm(list=ls())  # Careful! This clears all of R's memory! 

# INSTALLATION AND LOADING OF THE PACKAGES 
packages <- c('ggplot2', 'ggpubr', 'ks', 'rjags', 'runjags', 'nimble', '"PerformanceA
nalytics"', 'psych', 'GGally', 'summarytools', 'knitr', 'dplyr', 'data.table', 'split
stackshape') 
 
for (pkg in packages) { 
  if (pkg %in% rownames(installed.packages()) == FALSE) 
  {install.packages(pkg)} 
  if (pkg %in% rownames(.packages()) == FALSE) 
  {library(pkg, character.only = TRUE)} 
} 

 
setwd("D:/RMIT/Sem 3/Applied Bayesian") 
source("DBDA2E-utilities.R")       
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#============================================================================ 
#===========================DATA PREPARATION================================ 
#============================================================================ 

myData <- read.csv("covid_brazil_final.csv") 
describe(myData) 
x = as.matrix(myData[,c("Patient.age.quantile","Hematocrit", "Hemoglobin","Pl
atelets", "Mean.platelet.volume", "Red.blood.Cells", "Lymphocytes", "Mean.cor
puscular.hemoglobin.concentrationA.MCHC.", "Leukocytes", "Basophils", "Mean.c
orpuscular.hemoglobin.MCH.", "Eosinophils", "Mean.corpuscular.volume.MCV.", "
Monocytes", "Red.blood.cell.distribution.width.RDW.")]) 
 
# Some more descriptives 
cat("\nCORRELATION MATRIX OF PREDICTORS:\n ") 
show( round(cor(x),3) ) 
cat("\n") 
 
x_correlation <- round(cor(x),3) 
write.csv(x_correlation, "x_correlation.csv" ) 
 
#Pairplots for all variables 
chart.Correlation(x, histogram=TRUE, pch=19) 
 
#Remove Hematocrit, Red.blood.Cells and Mean.corpuscular.volume.MCV. due to h
igh correlation 
 
myData2 = myData[,c("Patient.ID", "Patient.age.quantile", "SARS.Cov2.exam.res
ult", "Hemoglobin","Platelets", "Mean.platelet.volume", "Lymphocytes", "Mean.
corpuscular.hemoglobin.concentrationA.MCHC.", "Leukocytes", "Basophils", "Mea
n.corpuscular.hemoglobin.MCH.", "Eosinophils", "Monocytes", "Red.blood.cell.d
istribution.width.RDW.")] 
 
names(myData2)[3] <- "covid.results" 
describe(myData2) 
 
myData2$covid.results <- as.numeric(as.factor(myData2$covid.results)) - 1 # T
o get 0/1 instead of 1/2; positive = 1; negative = 0 
 
#check for missing values 
sum(is.na(myData2)) 
 
#Descriptive look 
p1 <- ggplot(myData2, aes(x=Patient.age.quantile, y = covid.results)) + 
  geom_point() 
 
p2 <- ggplot(myData2, aes(x=Hemoglobin, y = covid.results)) + 
  geom_point() 
 
p3 <- ggplot(myData2, aes(x=Platelets, y = covid.results)) + 
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  geom_point() 
 
p4 <- ggplot(myData2, aes(x=Mean.platelet.volume, y = covid.results)) + 
  geom_point() 
 
p5 <- ggplot(myData2, aes(x=Lymphocytes, y = covid.results)) + 
  geom_point() 
 
p6 <- ggplot(myData2, aes(x=Mean.corpuscular.hemoglobin.concentrationA.MCHC., 
y = covid.results)) + 
  geom_point() 
 
p7 <- ggplot(myData2, aes(x=Leukocytes, y = covid.results)) + 
  geom_point() 
 
p8 <- ggplot(myData2, aes(x=Basophils, y = covid.results)) + 
  geom_point() 
 
p9 <- ggplot(myData2, aes(x=Mean.corpuscular.hemoglobin.MCH., y = covid.resul
ts)) + 
  geom_point() 
 
p10 <- ggplot(myData2, aes(x=Eosinophils, y = covid.results)) + 
  geom_point() 
 
p11 <- ggplot(myData2, aes(x=Monocytes, y = covid.results)) + 
  geom_point() 
 
p12 <- ggplot(myData2, aes(x=Red.blood.cell.distribution.width.RDW., y = covi
d.results)) + 
  geom_point() 
 
 
figure <- ggarrange(p1, p2, p3, p4, p5, p10, p7, p8, nrow = 4, ncol = 2) 
figure <- annotate_figure(figure, 
                          top = text_grob("Covid test results vs independent 
variables", face = "bold", size = 14)) 
 
figure 
 
figure2 <- ggarrange(p9, p6, p11, p12, nrow = 4, ncol = 1) 
figure2 <- annotate_figure(figure2, 
                           top = text_grob("Covid test results vs independent 
variables", face = "bold", size = 14)) 
 
figure2 
 
myData3 = myData[,c("Hemoglobin","Platelets",  
                    "Mean.platelet.volume", "Lymphocytes", 
                    "Mean.corpuscular.hemoglobin.concentrationA.MCHC.", "Leuk
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ocytes", 
                    "Basophils", "Mean.corpuscular.hemoglobin.MCH.", "Eosinop
hils", 
                    "Monocytes", "Red.blood.cell.distribution.width.RDW.")]  
names(myData3)[5] <- "MCHC" 
names(myData3)[8] <- "MCH" 
names(myData3)[11] <- "Red Blood cell D.W" 
 
boxplot(myData3, xaxt = "n") 
text(x = 1:length(myData3), y = par("usr")[3] - 0.45, labels = names(myData3)
, xpd = NA, srt = 35, cex = 1.2) 
 
 
# THE DATA 
set.seed(999) 
trainData <- stratified(myData2, "covid.results", .7) 
testData <- setdiff(myData2, trainData) 
 
 
x = as.matrix(trainData[,c("Patient.age.quantile", "Hemoglobin","Platelets",  
                           "Mean.platelet.volume", "Lymphocytes", 
                           "Mean.corpuscular.hemoglobin.concentrationA.MCHC."
, "Leukocytes", 
                           "Basophils", "Mean.corpuscular.hemoglobin.MCH.", "
Eosinophils", 
                           "Monocytes", "Red.blood.cell.distribution.width.RD
W.")]) 
 
 
y = unlist(trainData[, "covid.results"])   

#============================================================================ 
#------------------------------ LOGISTIC REGRESSION ------------------------- 
#============================================================================ 
 
#===============PRELIMINARY FUNCTIONS FOR POSTERIOR INFERENCES===============
===== 
genMCMC = function( x, y, numAdaptSteps=500, numBburnInSteps = 500, 
                    numSavedSteps=500 ,  thinSteps=1 , saveName=NULL , 
                    runjagsMethod=runjagsMethodDefault ,  
                    nChains=nChainsDefault, beta1Sens="4", beta2Sens="4", bet
a3Sens="4", beta4Sens="4", beta5Sens="4", 
                    beta6Sens="4", beta7Sens="4", beta8Sens="4", beta9Sens="4
", beta10Sens="4", 
                    beta11Sens="4", beta12Sens="4" 
) {  
  require(runjags) 
  #--------------------------------------------------------------------------
--- 
  # THE DATA. 
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  # Do some checking that data make sense: 
  if ( any( !is.finite(y) ) ) { stop("All y values must be finite.") } 
  if ( any( !is.finite(x) ) ) { stop("All x values must be finite.") } 
  cat("\nCORRELATION MATRIX OF PREDICTORS:\n ") 
  show( round(cor(x),3) ) 
  cat("\n") 
  flush.console() 
  # Specify the data in a list, for later shipment to JAGS: 
  dataList = list( 
    x = x , 
    y = y , 
    Nx = dim(x)[2] , 
    Ntotal = dim(x)[1] 
  ) 
  #--------------------------------------------------------------------------
--- 
  # THE MODEL. 
  modelString = " 
#  Specify the model for standardized data: 
  model { 
    for ( i in 1:Ntotal ) { 
      # In JAGS, ilogit is logistic: 
      y[i] ~ dbern( mu[i] ) 
      mu[i] <- ( guess*(1/2)  
                 + (1.0-guess)*ilogit(beta0+sum(beta[1:Nx]*x[i,1:Nx])) ) 
    }     
    " 
  priorString0=paste("beta0 ~ dnorm( 0 , 1/2^2 )", "\n") 
  priorString1= paste("beta[1] ~ dnorm(0 , 1/", beta1Sens, ")", "\n") 
  priorString2= paste("beta[2] ~ dnorm(0 , 1/", beta2Sens, ")", "\n") 
  priorString3= paste("beta[3] ~ dnorm(0 , 1/", beta3Sens, ")", "\n") 
  priorString4= paste("beta[4] ~ dnorm(0 , 1/", beta4Sens, ")", "\n") 
  priorString5= paste("beta[5] ~ dnorm(0 , 1/", beta5Sens, ")", "\n") 
  priorString6= paste("beta[6] ~ dnorm(0 , 1/", beta6Sens, ")", "\n") 
  priorString7= paste("beta[7] ~ dnorm(0 , 1/", beta7Sens, ")", "\n") 
  priorString8= paste("beta[8] ~ dnorm(0 , 1/", beta8Sens, ")", "\n") 
  priorString9= paste("beta[9] ~ dnorm(0 , 1/", beta9Sens, ")", "\n") 
  priorString10= paste("beta[10] ~ dnorm(0 , 1/", beta10Sens, ")", "\n") 
  priorString11= paste("beta[11] ~ dnorm(0 , 1/", beta11Sens, ")", "\n") 
  priorString12= paste("beta[12] ~ dnorm(0 , 1/", beta12Sens, ")", "\n") 
   
  priorString = paste(priorString0, priorString1,priorString2, priorString3, 
priorString4, priorString5, priorString6, 
                      priorString7, priorString8,priorString9,priorString10,p
riorString11, priorString12)  
   
  # Priors vague on standardized scale: 
  guessString=" 
   
    guess ~ dbeta(1,9) 
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    # Transform to original scale: 
    # beta[1:Nx] <- zbeta[1:Nx] / xsd[1:Nx]  
    # beta0 <- zbeta0 - sum( zbeta[1:Nx] * xm[1:Nx] / xsd[1:Nx] ) 
  } 
  " # close quote for modelString 
  # Write out modelString to a text file 
  finalString = paste(modelString, priorString, guessString) 
  writeLines( finalString , con="TEMPmodel.txt" ) 
  #--------------------------------------------------------------------------
--- 
  # INTIALIZE THE CHAINS. 
  # Let JAGS do it... 
   
  #--------------------------------------------------------------------------
--- 
  # RUN THE CHAINS 
  parameters = c( "beta0" ,  "beta" ,   
                  "guess" ) 
  runJagsOut <- run.jags( method=runjagsMethod , 
                          model="TEMPmodel.txt" ,  
                          monitor=parameters ,  
                          data=dataList ,   
                          #inits=initsList ,  
                          n.chains=nChains , 
                          adapt=numAdaptSteps , 
                          burnin=numBburnInSteps ,  
                          sample=ceiling(numSavedSteps/nChains) , 
                          thin=thinSteps , 
                          summarise=FALSE , 
                          plots=FALSE ) 
  codaSamples = as.mcmc.list( runJagsOut ) 
  # resulting codaSamples object has these indices:  
  #   codaSamples[[ chainIdx ]][ stepIdx , paramIdx ] 
  if ( !is.null(saveName) ) { 
    save( codaSamples , file=paste(saveName,"Mcmc.Rdata",sep="") ) 
  } 
  return( codaSamples ) 
} # end function 
 
#============================================================================
========== 
 
smryMCMC_HD = function(  codaSamples , compVal = NULL,  saveName=NULL) { 
  summaryInfo = NULL 
  mcmcMat = as.matrix(codaSamples,chains=TRUE) 
  paramName = colnames(mcmcMat) 
  for ( pName in paramName ) { 
    if (pName %in% colnames(compVal)){ 
      if (!is.na(compVal[pName])) { 
        summaryInfo = rbind( summaryInfo , summarizePost( paramSampleVec = mc
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mcMat[,pName] ,  
                                                          compVal = as.numeri
c(compVal[pName]) )) 
      } 
      else { 
        summaryInfo = rbind( summaryInfo , summarizePost( paramSampleVec = mc
mcMat[,pName] ) ) 
      } 
    } else { 
      summaryInfo = rbind( summaryInfo , summarizePost( paramSampleVec = mcmc
Mat[,pName] ) ) 
    } 
  } 
  rownames(summaryInfo) = paramName 
   
  # summaryInfo = rbind( summaryInfo ,  
  #                      "tau" = summarizePost( mcmcMat[,"tau"] ) ) 
  if ( !is.null(saveName) ) { 
    write.csv( summaryInfo , file=paste(saveName,"SummaryInfo.csv",sep="") ) 
  } 
  return( summaryInfo ) 
} 
 
#============================================================================
=== 
 
plotMCMC_HD = function( codaSamples , data , xName="x" , yName="y", preds = F
ALSE , 
                        showCurve=FALSE ,  pairsPlot=FALSE , compVal = NULL,  
                        saveName=NULL , saveType="jpg" ) { 
  # showCurve is TRUE or FALSE and indicates whether the posterior should 
  #   be displayed as a histogram (by default) or by an approximate curve. 
  # pairsPlot is TRUE or FALSE and indicates whether scatterplots of pairs 
  #   of parameters should be displayed. 
  #--------------------------------------------------------------------------
--- 
  y = data[,yName] 
  x = as.matrix(data[,xName]) 
  mcmcMat = as.matrix(codaSamples,chains=TRUE) 
  chainLength = NROW( mcmcMat ) 
  # zbeta0 = mcmcMat[,"zbeta0"] 
  # zbeta  = mcmcMat[,grep("^zbeta$|^zbeta\\[",colnames(mcmcMat))] 
  # if ( ncol(x)==1 ) { zbeta = matrix( zbeta , ncol=1 ) } 
  beta0 = mcmcMat[,"beta0"] 
  beta  = mcmcMat[,grep("^beta$|^beta\\[",colnames(mcmcMat))] 
  if ( ncol(x)==1 ) { beta = matrix( beta , ncol=1 ) } 
  if (preds){ 
    pred = mcmcMat[,grep("^pred$|^pred\\[",colnames(mcmcMat))] 
  } # Added by Demirhan 
  guess = mcmcMat[,"guess"] 
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  #--------------------------------------------------------------------------
--- 
  # Compute R^2 for credible parameters: 
  YcorX = cor( y , x ) # correlation of y with each x predictor 
  Rsq = beta %*% matrix( YcorX , ncol=1 ) 
  #--------------------------------------------------------------------------
--- 
  if ( pairsPlot ) { 
    # Plot the parameters pairwise, to see correlations: 
    openGraph() 
    nPtToPlot = 1000 
    plotIdx = floor(seq(1,chainLength,by=chainLength/nPtToPlot)) 
    panel.cor = function(x, y, digits=2, prefix="", cex.cor, ...) { 
      usr = par("usr"); on.exit(par(usr)) 
      par(usr = c(0, 1, 0, 1)) 
      r = (cor(x, y)) 
      txt = format(c(r, 0.123456789), digits=digits)[1] 
      txt = paste(prefix, txt, sep="") 
      if(missing(cex.cor)) cex.cor <- 0.8/strwidth(txt) 
      text(0.5, 0.5, txt, cex=1.25 ) # was cex=cex.cor*r 
    } 
    pairs( cbind( beta0 , beta )[plotIdx,] , 
           labels=c( "beta[0]" ,  
                     paste0("beta[",1:ncol(beta),"]\n",xName) ,  
                     expression(tau) ) ,  
           lower.panel=panel.cor , col="skyblue" ) 
    if ( !is.null(saveName) ) { 
      saveGraph( file=paste(saveName,"PostPairs",sep=""), type=saveType) 
    } 
  } 
  #--------------------------------------------------------------------------
--- 
  # Marginal histograms: 
   
  decideOpenGraph = function( panelCount , saveName , finished=FALSE ,  
                              nRow=2 , nCol=3 ) { 
    # If finishing a set: 
    if ( finished==TRUE ) { 
      if ( !is.null(saveName) ) { 
        saveGraph( file=paste0(saveName,ceiling((panelCount-1)/(nRow*nCol))),  
                   type=saveType) 
      } 
      panelCount = 1 # re-set panelCount 
      return(panelCount) 
    } else { 
      # If this is first panel of a graph: 
      if ( ( panelCount %% (nRow*nCol) ) == 1 ) { 
        # If previous graph was open, save previous one: 
        if ( panelCount>1 & !is.null(saveName) ) { 
          saveGraph( file=paste0(saveName,(panelCount%/%(nRow*nCol))),  
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                     type=saveType) 
        } 
        # Open new graph 
        openGraph(width=nCol*7.0/3,height=nRow*2.0) 
        layout( matrix( 1:(nRow*nCol) , nrow=nRow, byrow=TRUE ) ) 
        par( mar=c(4,4,2.5,0.5) , mgp=c(2.5,0.7,0) ) 
      } 
      # Increment and return panel count: 
      panelCount = panelCount+1 
      return(panelCount) 
    } 
  } 
   
  # Original scale: 
  panelCount = 1 
  panelCount = decideOpenGraph( panelCount , saveName=paste0(saveName,"PostMa
rg") ) 
  histInfo = plotPost( beta0 , cex.lab = 1.75 , showCurve=showCurve , 
                       xlab=bquote(beta[0]) , main="Intercept", compVal = as.
numeric(compVal["beta0"] )) 
  for ( bIdx in 1:ncol(beta) ) { 
    panelCount = decideOpenGraph( panelCount , saveName=paste0(saveName,"Post
Marg") ) 
    if (!is.na(compVal[paste0("beta[",bIdx,"]")])){ 
      histInfo = plotPost( beta[,bIdx] , cex.lab = 1.75 , showCurve=showCurve 
, 
                           xlab=bquote(beta[.(bIdx)]) , main=xName[bIdx], 
                           compVal = as.numeric(compVal[paste0("beta[",bIdx,"
]")])) 
    } else{ 
      histInfo = plotPost( beta[,bIdx] , cex.lab = 1.75 , showCurve=showCurve 
, 
                           xlab=bquote(beta[.(bIdx)]) , main=xName[bIdx]) 
    } 
  } 
  panelCount = decideOpenGraph( panelCount , saveName=paste0(saveName,"PostMa
rg") ) 
  histInfo = plotPost( Rsq , cex.lab = 1.75 , showCurve=showCurve , 
                       xlab=bquote(R^2) , main=paste("Prop Var Accntd") ) 
   
  panelCount = decideOpenGraph( panelCount , saveName=paste0(saveName,"PostMa
rg") ) 
  histInfo = plotPost( guess , cex.lab = 1.75 , showCurve=showCurve , 
                       xlab="Guess parameter" , main=paste("Prop Var Accntd")
) 
   
  panelCount = 1 
  if ( preds){ 
     
    for ( pIdx in 1:ncol(pred) ) { 



MATH2269 Applied Bayesian Statistics 

58 
 

      panelCount = decideOpenGraph( panelCount , saveName=paste0(saveName,"Po
stMarg") ) 
      histInfo = plotPost( pred[,pIdx] , cex.lab = 1.75 , showCurve=showCurve 
, 
                           xlab=bquote(pred[.(pIdx)]) , main=paste0("Predicti
on ",pIdx) ) 
    } 
  } 
  # Standardized scale: 
  panelCount = 1 
  # panelCount = decideOpenGraph( panelCount , saveName=paste0(saveName,"Post
MargZ") ) 
  # histInfo = plotPost( zbeta0 , cex.lab = 1.75 , showCurve=showCurve , 
  #                      xlab=bquote(z*beta[0]) , main="Intercept" ) 
  # for ( bIdx in 1:ncol(beta) ) { 
  #   panelCount = decideOpenGraph( panelCount , saveName=paste0(saveName,"Po
stMargZ") ) 
  #   histInfo = plotPost( zbeta[,bIdx] , cex.lab = 1.75 , showCurve=showCurv
e , 
  #                        xlab=bquote(z*beta[.(bIdx)]) , main=xName[bIdx] ) 
  # } 
  # panelCount = decideOpenGraph( panelCount , saveName=paste0(saveName,"Post
MargZ") ) 
  # histInfo = plotPost( Rsq , cex.lab = 1.75 , showCurve=showCurve , 
  #                      xlab=bquote(R^2) , main=paste("Prop Var Accntd") ) 
  # panelCount = decideOpenGraph( panelCount , finished=TRUE , saveName=paste
0(saveName,"PostMargZ") ) 
   
  #--------------------------------------------------------------------------
--- 
} 
 
#===============PRELIMINARY FUNCTIONS FOR POSTERIOR INFERENCES===============
===== 
 
 
 
numAdaptSteps = 1000 ; numBburnInSteps=1000; numSavedSteps=3000 ; thinSteps=4
0; nChains = 3 
 
startTime = proc.time() 
mcmcCoda = genMCMC( x, y, numAdaptSteps=numAdaptSteps, numBburnInSteps= numBb
urnInSteps, 
                    numSavedSteps=numSavedSteps , thinSteps=thinSteps, beta12
Sens=0.00000001, 
                    nChains = nChains ) 
 
 
 
stopTime = proc.time() 
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duration = stopTime - startTime 
show(duration) 
 
#save.image(file="rEnvironment_40Thin_3000_logistic_b12_try2.RData") 
load(file="rEnvironment_40Thin_3000_logistic.RData") 
 
#----------------------------------------------------------------------------
---  
# Display diagnostics of chain, for specified parameters: 
parameterNames = c("beta0"  ,  "beta[1]",  "beta[2]" ,  "beta[3]" ,  "beta[4]
" ,  "beta[5]"  , "beta[6]"  , 
                   "beta[7]"  , "beta[8]", "beta[9]", "beta[10]", "beta[11]", 
"beta[12]", "guess") #varnames(mcmcCoda) # get all parameter names 
for ( parName in parameterNames ) { 
  diagMCMC( codaObject=mcmcCoda , parName=parName)  
} 
#----------------------------------------------------------------------------
---  
# Get summary statistics of chain: 
 
compVal <- data.frame("beta0" = 0, "beta[1]" = 0, "beta[2]" = 0, "beta[3]" = 
0, "beta[4]" =  0,  "beta[5]" =  0,  
                      "beta[6]" =  0, "beta[7]" = 0, "beta[8]" = 0, "beta[9]" 
= 0,"beta[10]" = 0, 
                      "beta[11]" = 0, "beta[12]" = 0,check.names=FALSE) 
 
summaryInfo <- smryMCMC_HD( codaSamples = mcmcCoda , compVal = compVal ) 
print(summaryInfo) 
 
plotMCMC_HD( codaSamples = mcmcCoda , data = myData2, xName=c("Patient.age.qu
antile", "Hemoglobin","Platelets",  
                                                              "Mean.platelet.
volume", "Lymphocytes", 
                                                              "Mean.corpuscul
ar.hemoglobin.concentrationA.MCHC.", "Leukocytes", 
                                                              "Basophils", "M
ean.corpuscular.hemoglobin.MCH.", "Eosinophils", 
                                                              "Monocytes", "R
ed.blood.cell.distribution.width.RDW."), 
             yName="covid.results", compVal = compVal, preds= FALSE, pairsPlo
t=TRUE ) 
 
write.csv(summaryInfo, "summaryInfoLogistic_b12_try2.csv" ) 
 
 
 
# ============ Predictive check ============ 
 
coeffs <- as.vector(summaryInfo[2:14,3]) 
X <- as.matrix(cbind(rep(1,nrow(testData)),testData[, c(2,4:14)])) 
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#X <- as.matrix(cbind(rep(1,nrow(trainData)),trainData[, c(1,3:13)])) 
predProbs <- 1/(1+exp(-(X%*%coeffs))) 
 
 
trueClass <- unlist(testData[,3]) 
#trueClass <- unlist(trainData[,3]) 
 
confusionMatrix <- function(resp, pred){ 
  #if only one class is predicted, there is no accuracy at all 
  if(dim(table(pred))==1) 
  {   
    return(list(accuracy=0, AUC = 0)) 
  }   
  else 
  {   
     
    classRes <- data.frame(response = resp , predicted = pred) 
    conf = xtabs(~ predicted + response, data = classRes) 
     
    accuracy = sum(diag(conf))/sum(conf) 
    accuracy 
    precision = conf[1,1]/(conf[1,1]+conf[1,2]) 
    precision 
    recall = conf[1,1]/(conf[1,1]+conf[2,1]) 
    recall 
    Fscore = 2*((precision*recall)/(precision+recall)) 
    Fscore 
    tpr = conf[1,1]/(conf[1,1]+conf[2,1]) 
    tnr = conf[2,2]/(conf[2,2]+conf[1,2]) 
    AUC = (tpr + tnr) /2 
    return(list(accuracy = accuracy, precision = precision, recall = recall, 
Fscore = Fscore, AUC=AUC,conf = conf )) 
     
  } 
} 
 
thresholds <- seq(0.05, 0.95, 0.05) 
cf <- array(NA,dim =c(length(thresholds),3)) 
for (i in 1:(length(thresholds))){ 
  predClass <- as.numeric(predProbs>thresholds[i]) 
  cf[i,3] <- confusionMatrix(resp = trueClass, pred = predClass)$accuracy 
  cf[i,2] <- confusionMatrix(resp = trueClass, pred = predClass)$AUC 
  cf[i,1] <- thresholds[i] 
} 
 
colnames(cf) <- c("Threshold", "AUC", "Accuracy") 
cf 
write.csv(cf, "cf_b12_try2.csv" ) 
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# Best performance using AUC 
threshold <- 0.2 
predClass <- as.numeric(predProbs>threshold) 
confusionMatrix(resp = trueClass, pred = predClass) 
preds <- data.frame(name = testData$Patient.ID, probPositive = predProbs, res
p = trueClass, pred = predClass) 
write.csv(preds, "preds_logistic_AUC_b12_try2.csv" ) 
 
# Best performance using Accuracy 
threshold <- 0.5 
predClass <- as.numeric(predProbs>threshold) 
confusionMatrix(resp = trueClass, pred = predClass) 
preds <- data.frame(name = testData$Patient.ID, probPositive = predProbs, res
p = trueClass, pred = predClass) 
write.csv(preds, "preds_logistic_Accuracy_b12_try2.csv" ) 
 
a <- ggplot(preds, aes(x = probPositive)) 
a + geom_histogram(aes(color = as.factor(pred), fill = as.factor(pred)),bins 
= 100, 
                   alpha = 0.4, position = "identity") 
 

[B2] – R codes of the Hierarchical Model 
# Note that the codes for the Hierarchical Model was ran separately for effic
iency purposes. It means that the codes for data preprocessing are repeated a
nd edited as deemed fit in this version. 

 

#===============PRELIMINARY FUNCTIONS FOR POSTERIOR INFERENCES===============
===== 
genMCMC = function( data , zName="z" , NName="N" , sName="s" , cName="c" , 
                    numSavedSteps=5000 , saveName=NULL , thinSteps=1 , 
                    runjagsMethod=runjagsMethodDefault ,   useRunjags = TRUE, 
                    nChains=nChainsDefault,   burnInSteps = 500 , adaptSteps 
= 500 , forInits = NULL   ) {  
  require(rjags) 
  require(runjags) 
  #--------------------------------------------------------------------------
--- 
  # THE DATA. 
  # N.B.: This function expects the data to be a data frame,  
  # with one component z being a vector of integer # successes, 
  # one component N being a vector of integer # attempts, 
  # one component s being a factor of subject identifiers, 
  # and one component c being a factor of category identifiers, with 
  # subjects nested in categories. 
  print(cName) 
  z = data[[zName]] 
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  N = data[[NName]] 
  s = data[[sName]] 
  c = data[[cName]] 
  Nsubj = length(unique(s)) 
  Ncat =  length(unique(c)) 
  # Specify the data in a list, for later shipment to JAGS: 
  dataList = list( 
    z = z , 
    # N = N , 
    c = as.numeric(c) , # c in JAGS is numeric, in R is possibly factor 
    Nsubj = Nsubj , 
    Ncat = Ncat 
  ) 
  #--------------------------------------------------------------------------
--- 
  # THE MODEL. 
  modelString = " 
  model { 
    for ( sIdx in 1:Nsubj ) { 
      z[sIdx] ~ dbern( theta[sIdx]) 
      theta[sIdx] ~ dbeta( omega[c[sIdx]]*(kappa[c[sIdx]]-2)+1 ,  
                           (1-omega[c[sIdx]])*(kappa[c[sIdx]]-2)+1 )  
    } 
     
 
    for ( cIdx in 1:Ncat ) { 
      omega[cIdx] ~ dbeta( omegaO*(kappaO-2)+1 ,  
                           (1-omegaO)*(kappaO-2)+1 ) 
      kappa[cIdx] <- kappaMinusTwo[cIdx] + 2 
      kappaMinusTwo[cIdx] ~ dgamma( 0.01 , 0.01 ) # mean=1 , sd=10 (generic v
ague) 
    } 
    #omegaO ~ dbeta( 1.0 , 1.0 )  
    #omegaO ~ dbeta( 1 , 99 ) # mode=0 , concentration=100 
    #omegaO ~ dbeta( 10.8 , 89.2 ) # mode=0.1 , concentration=100 
    #omegaO ~ dbeta( 50 , 50 ) # mode=0.5 , concentration=100 
    omegaO ~ dbeta( 89.2 , 10.8 ) # mode=0.9 , concentration=100 
     
    kappaO <- kappaMinusTwoO + 2 
    #kappaMinusTwoO ~ dgamma( 0.01 , 0.01 )  # mean=1 , sd=10 (generic vague) 
    kappaMinusTwoO ~ dgamma( 1.01005 , 0.01005012 )  # mode=1 , sd=100 
    # kappaMinusTwoO ~ dgamma( 2.6 , 26.96 )  # mode=10 , sd=2 
    #kappaMinusTwoO ~ dgamma( 1.105125 , 0.1051249 )  # mode=1 , sd=10 
    #kappaMinusTwoO ~ dgamma( 1.105125 , 0.01051249 )  # mode=10 , sd=100 
    #kappaMinusTwoO ~ dgamma( 5.05 , 101.99 )  # mode=20 , sd=2 
    #kappaMinusTwoO ~ dgamma( 0.01 , 1.22)  # mode=20 , sd=100 
 
    #kappaMinusTwoO ~ dgamma( 10.02 , 402 )  # mode=40 , sd=2 
    #kappaMinusTwoO ~ dgamma( 0.01 , 1.49 )  # mode=40 , sd=100     
  } 
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  " # close quote for modelString 
  writeLines( modelString , con="TEMPmodel.txt" ) 
  #--------------------------------------------------------------------------
--- 
  # INTIALIZE THE CHAINS. 
  # Initial values of MCMC chains based on data: 
  # initsList = function() { 
  #   thetaInit = rep(NA,Nsubj) 
  #   for ( sIdx in 1:Nsubj ) { # for each subject 
  #     resampledZ = rbinom(1, size=N[sIdx] , prob=z[sIdx]/N[sIdx] ) 
  #     thetaInit[sIdx] = resampledZ/N[sIdx] 
  #   } 
  #   thetaInit = 0.001+0.998*thetaInit # keep away from 0,1     
  #   kappaInit = 100 # lazy, start high and let burn-in find better value 
  #   return( list( theta=thetaInit ,  
  #                 omega=aggregate(thetaInit,by=list(c),FUN=mean)$x , 
  #                 omegaO=mean(thetaInit) , 
  #                 kappaMinusTwo=rep(kappaInit-2,Ncat) , 
  #                 kappaMinusTwoO=kappaInit-2 ) ) 
  # } 
  initsList = list( theta=rep(0.5,891) ,  
                    omega=rep(0.5,3), 
                    omegaO=0.5 , 
                    kappaMinusTwoO=3, 
                    kappaMinusTwo=rep(3,3)) 
   
  # initsList = list( theta=forInits[9:899,3],  
  #                   omega=forInits[1:3,3], 
  #                   omegaO=forInits[4,3] , 
  #                   kappaMinusTwoO=forInits[8,3], 
  #                   kappaMinusTwo=forInits[5:7,3]) 
  #--------------------------------------------------------------------------
--- 
  # RUN THE CHAINS 
  parameters = c( "theta","omega","kappa","omegaO","kappaO")  
   
   
  if ( useRunjags ) { 
    runJagsOut <- run.jags( method=runjagsMethod , 
                            model="TEMPmodel.txt" ,  
                            monitor=parameters ,  
                            data=dataList ,   
                            # inits=initsList ,  
                            n.chains=nChains , 
                            adapt=adaptSteps , 
                            burnin=burnInSteps ,  
                            sample=ceiling(numSavedSteps/nChains) , 
                            thin=thinSteps , 
                            summarise=FALSE , 
                            plots=FALSE ) 
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    codaSamples = as.mcmc.list( runJagsOut ) 
  } else { 
    # Create, initialize, and adapt the model: 
    jagsModel = jags.model( "TEMPmodel.txt" , data=dataList , inits=initsList 
,  
                            n.chains=nChains , n.adapt=adaptSteps ) 
    # Burn-in: 
    cat( "Burning in the MCMC chain...\n" ) 
    update( jagsModel , n.iter=burnInSteps ) 
    # The saved MCMC chain: 
    cat( "Sampling final MCMC chain...\n" ) 
    codaSamples = coda.samples( jagsModel , variable.names=parameters ,  
                                n.iter=ceiling(numSavedSteps*thinSteps/nChain
s),  
                                thin=thinSteps ) 
  }   
   
  # resulting codaSamples object has these indices:  
  #   codaSamples[[ chainIdx ]][ stepIdx , paramIdx ] 
  if ( !is.null(saveName) ) { 
    save( codaSamples , file=paste(saveName,"Mcmc.Rdata",sep="") ) 
  } 
  return( codaSamples ) 
} # end function 
 
#============================================================================
========== 
 
smryMCMC = function(  codaSamples , compVal=0.5 , rope=NULL ,  
                      diffSVec=NULL , diffCVec=NULL ,  
                      compValDiff=0.0 , ropeDiff=NULL ,  
                      saveName=NULL ) { 
  mcmcMat = as.matrix(codaSamples,chains=TRUE) 
  summaryInfo = NULL 
  rowIdx = 0 
  # omega: 
  for ( parName in grep("omega",colnames(mcmcMat),value=TRUE) ) { 
    summaryInfo = rbind( summaryInfo ,  
                         summarizePost( mcmcMat[,parName] , 
                                        compVal=compVal , ROPE=rope ) ) 
    rowIdx = rowIdx+1 
    rownames(summaryInfo)[rowIdx] = parName 
  } 
  # kappa: 
  for ( parName in grep("kappa",colnames(mcmcMat),value=TRUE) ) { 
    summaryInfo = rbind( summaryInfo ,  
                         summarizePost( mcmcMat[,parName] , 
                                        compVal=NULL , ROPE=NULL ) ) 
    rowIdx = rowIdx+1 
    rownames(summaryInfo)[rowIdx] = parName 
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  } 
  # theta: 
  for ( parName in grep("theta",colnames(mcmcMat),value=TRUE) ) { 
    summaryInfo = rbind( summaryInfo ,  
                         summarizePost( mcmcMat[,parName] , 
                                        compVal=compVal , ROPE=rope ) ) 
    rowIdx = rowIdx+1 
    rownames(summaryInfo)[rowIdx] = parName 
  } 
  # differences of theta's: 
  if ( !is.null(diffSVec) ) { 
    Nidx = length(diffSVec) 
    for ( t1Idx in 1:(Nidx-1) ) { 
      for ( t2Idx in (t1Idx+1):Nidx ) { 
        parName1 = paste0("theta[",diffSVec[t1Idx],"]") 
        parName2 = paste0("theta[",diffSVec[t2Idx],"]") 
        summaryInfo = rbind( summaryInfo ,  
                             summarizePost( mcmcMat[,parName1]-mcmcMat[,parNa
me2] , 
                                            compVal=compValDiff , ROPE=ropeDi
ff ) ) 
        rowIdx = rowIdx+1 
        rownames(summaryInfo)[rowIdx] = paste0(parName1,"-",parName2) 
      } 
    } 
  } 
  # differences of omega's: 
  if ( !is.null(diffCVec) ) { 
    Nidx = length(diffCVec) 
    for ( t1Idx in 1:(Nidx-1) ) { 
      for ( t2Idx in (t1Idx+1):Nidx ) { 
        parName1 = paste0("omega[",diffCVec[t1Idx],"]") 
        parName2 = paste0("omega[",diffCVec[t2Idx],"]") 
        summaryInfo = rbind( summaryInfo ,  
                             summarizePost( mcmcMat[,parName1]-mcmcMat[,parNa
me2] , 
                                            compVal=compValDiff , ROPE=ropeDi
ff ) ) 
        rowIdx = rowIdx+1 
        rownames(summaryInfo)[rowIdx] = paste0(parName1,"-",parName2) 
      } 
    } 
  } 
  # save: 
  if ( !is.null(saveName) ) { 
    write.csv( summaryInfo , file=paste(saveName,"SummaryInfo.csv",sep="") ) 
  } 
  show( summaryInfo ) 
  return( summaryInfo ) 
} 
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#============================================================================
=== 
 
plotMCMC = function( codaSamples ,  
                     data , zName="z" , NName="N" , sName="s" , cName="c" ,                      
compVal=0.5 , rope=NULL ,  
                     diffSList=NULL , diffCList=NULL ,  
                     compValDiff=0.0 , ropeDiff=NULL ,  
                     saveName=NULL , saveType="jpg" ) { 
  #--------------------------------------------------------------------------
--- 
  # N.B.: This function expects the data to be a data frame,  
  # with one component z being a vector of integer # successes, 
  # one component N being a vector of integer # attempts, 
  # one component s being a factor of subject identifiers, 
  # and one component c being a factor of category identifiers, with 
  # subjects nested in categories. 
  z = data[[zName]] 
  N = data[[NName]] 
  s = data[[sName]] 
  c = data[[cName]] 
  Nsubj = length(unique(s)) 
  Ncat =  length(unique(c)) 
  # Now plot the posterior: 
  mcmcMat = as.matrix(codaSamples,chains=TRUE) 
  chainLength = NROW( mcmcMat ) 
   
  # kappa: 
  parNames = sort(grep("kappa",colnames(mcmcMat),value=TRUE)) 
  nPanels = length(parNames) 
  nCols = 3 
  nRows = ceiling(nPanels/nCols) 
  openGraph(width=2.5*nCols,height=2.0*nRows) 
  par( mfcol=c(nRows,nCols) ) 
  par( mar=c(3.5,4,3.5,4) , mgp=c(2.0,0.7,0) ) 
  #xLim = range( mcmcMat[,parNames] ) 
  xLim=quantile(mcmcMat[,parNames],probs=c(0.000,0.995)) 
  mainLab = c(paste( levels(factor(data[[cName]]))),"Overall") 
  print(paste("levels=", levels(factor(data[[cName]])))) 
   
  mainIdx = 0 
  for ( parName in parNames ) { 
    mainIdx = mainIdx+1 
    print(paste("Kappa Title=", mainLab[mainIdx])) 
     
    postInfo = plotPost( mcmcMat[,parName] , compVal=compVal , ROPE=rope , 
                         xlab=bquote(.(parName)) , cex.lab=1.25 ,  
                         main=mainLab[mainIdx] , cex.main=1.5 , 
                         xlim=xLim , border="skyblue" ) 
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  }   
  if ( !is.null(saveName) ) { 
    saveGraph( file=paste(saveName,"Kappa",sep=""), type=saveType) 
  } 
   
  # omega: 
  parNames = sort(grep("omega",colnames(mcmcMat),value=TRUE)) 
  nPanels = length(parNames) 
  nCols = 3 
  nRows = ceiling(nPanels/nCols) 
  openGraph(width=2.5*nCols,height=2.0*nRows) 
  par( mfcol=c(nRows,nCols) ) 
  par( mar=c(3.5,4,3.5,4) , mgp=c(2.0,0.7,0) ) 
  #xLim = range( mcmcMat[,parNames] ) 
  xLim=quantile(mcmcMat[,parNames],probs=c(0.001,0.999)) 
  mainLab = c(paste(levels(factor(data[[cName]]))),"Overall") 
  mainIdx = 0 
  for ( parName in parNames ) { 
     
    mainIdx = mainIdx+1 
    print(paste("Omega Title=", mainLab[mainIdx])) 
     
    postInfo = plotPost( mcmcMat[,parName] , compVal=compVal , ROPE=rope , 
                         xlab=bquote(.(parName)) , cex.lab=1.25 ,  
                         main=mainLab[mainIdx] , cex.main=1.5 , 
                         xlim=xLim , border="skyblue" ) 
  }   
  if ( !is.null(saveName) ) { 
    saveGraph( file=paste(saveName,"Omega",sep=""), type=saveType) 
  } 
   
  # Plot individual omega's and differences: 
  if ( !is.null(diffCList) ) { 
    for ( compIdx in 1:length(diffCList)) { 
      diffCVec = diffCList[[compIdx]] 
      Nidx = length(diffCVec) 
      temp=NULL 
      mainLab = c(paste(levels(factor(data[[cName]]))),"Overall") 
       
      for ( i in 1:Nidx ) { 
        temp = c( temp , which(levels(factor((data[[cName]])))==diffCVec[i]) 
) 
      } 
      #diffCVec = temp 
      print(paste("Nidx=", Nidx, "diffCList", diffCList, "diffCVec", diffCVec
)) 
        
      openGraph(width=2.5*Nidx,height=2.0*Nidx) 
      par( mfrow=c(Nidx,Nidx) ) 
      xLim = range(c( compVal, rope, 
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                      mcmcMat[,paste0("omega[",diffCVec,"]")] )) 
      for ( t1Idx in 1:Nidx ) { 
        for ( t2Idx in 1:Nidx ) { 
          parName1 = paste0("omega[",diffCVec[t1Idx],"]") 
          parName2 = paste0("omega[",diffCVec[t2Idx],"]") 
          if ( t1Idx > t2Idx) {   
            # plot.new() # empty plot, advance to next 
            par( mar=c(3,1,3,1) , mgp=c(2.0,0.7,0) , pty="s" ) 
            nToPlot = 700 
            ptIdx = round(seq(1,chainLength,length=nToPlot)) 
             
            print(paste("scatter plot x=", diffCVec[t2Idx])) 
            print(paste("scatter plot y=", diffCVec[t1Idx])) 
             
            print(paste("scatter plot x=", levels(factor(data[[cName]]))[diff
CVec[t2Idx]])) 
            print(paste("scatter plot y=", levels(factor(data[[cName]]))[diff
CVec[t1Idx]])) 
 
            plot ( mcmcMat[ptIdx,parName2] , mcmcMat[ptIdx,parName1] ,  
                   cex.main=1.25 , cex.lab=1.25 ,  
                     xlab=paste(levels(factor(data[[cName]]))[diffCVec[t2Idx]
]) ,  
                     ylab=paste(levels(factor(data[[cName]]))[diffCVec[t1Idx]
]) ,  
                   col="skyblue" ) 
            abline(0,1,lty="dotted") 
          } else if ( t1Idx == t2Idx ) { 
            par( mar=c(3,3.5,3,1.5) , mgp=c(2.0,0.7,0) , pty="m" ) 
            postInfo = plotPost( mcmcMat[,parName1] ,  
                                 compVal=compVal , ROPE=rope ,  
                                 cex.main=1.25 , cex.lab=1.25 ,  
                                 xlab=bquote(.(parName1)) , 
                                 main=paste(levels(factor(data[[cName]]))[dif
fCVec[t1Idx]]) ,   
                                 xlim=xLim ) 
          } else if ( t1Idx < t2Idx ) { 
            par( mar=c(3,1.5,3,1.5) , mgp=c(2.0,0.7,0) , pty="m" ) 
            postInfo = plotPost( mcmcMat[,parName1]-mcmcMat[,parName2] ,  
                                 compVal=compValDiff , ROPE=ropeDiff ,  
                                 cex.main=1.0 , cex.lab=1.25 ,  
                                 xlab=bquote("Difference of "*omega*"'s"),  
                                  main=paste0(  
                                     levels(factor(data[[cName]]))[diffCVec[t
1Idx]] , 
                                     "\n - ", 
                                     levels(factor(data[[cName]]))[diffCVec[t
2Idx]])) 
          } 
        } 



MATH2269 Applied Bayesian Statistics 

69 
 

      } 
      if ( !is.null(saveName) ) { 
        saveGraph( file=paste0(saveName,"OmegaDiff",compIdx), type=saveType) 
      } 
    } 
  } 
   
  # Plot individual theta's and differences: 
  if ( !is.null(diffSList) ) { 
    for ( compIdx in 1:length(diffSList) ) { 
      diffSVec = diffSList[[compIdx]] 
      Nidx = length(diffSVec) 
      temp=NULL 
      for ( i in 1:Nidx ) { 
 
            temp = c( temp , data[[sName]]==diffSVec[i]) 
      } 
      #diffSVec = temp 
      openGraph(width=2.5*Nidx,height=2.0*Nidx) 
      par( mfrow=c(Nidx,Nidx) ) 
      xLim = range(c(compVal,rope,mcmcMat[,paste0("theta[",diffSVec,"]")], 
                     z[diffSVec]/N[diffSVec])) 
      for ( t1Idx in 1:Nidx ) { 
        for ( t2Idx in 1:Nidx ) { 
          parName1 = paste0("theta[",diffSVec[t1Idx],"]") 
          parName2 = paste0("theta[",diffSVec[t2Idx],"]") 
          if ( t1Idx > t2Idx) {   
            # plot.new() # empty plot, advance to next 
            par( mar=c(3,3,3,1) , mgp=c(2.0,0.7,0) , pty="s" ) 
            nToPlot = 700 
            ptIdx = round(seq(1,chainLength,length=nToPlot)) 
            plot ( mcmcMat[ptIdx,parName2] , mcmcMat[ptIdx,parName1] , cex.la
b=1.25 , 
                   xlab=s[diffSVec[t2Idx]] ,  
                   ylab=s[diffSVec[t1Idx]] ,  
                   col="skyblue" ) 
            abline(0,1,lty="dotted") 
          } else if ( t1Idx == t2Idx ) { 
            par( mar=c(3,3.5,3,1.5) , mgp=c(2.0,0.7,0) , pty="m" ) 
            postInfo = plotPost( mcmcMat[,parName1] ,  
                                 compVal=compVal , ROPE=rope ,  
                                 cex.main=1.0 , cex.lab=1.25 ,  
                                 xlab=bquote(.(parName1)) , 
                                 main=paste0( s[diffSVec[t1Idx]],  
                                              " (",c[diffSVec[t1Idx]],")") ,   
                                 xlim=xLim ) 
            # points( z[diffSVec]/N[diffSVec] , 0 ,  
            #         pch="+" , col="red" , cex=3 ) 
            # text( z[diffSVec[t1Idx]]/N[diffSVec[t1Idx]] , 0 ,  
            #       bquote(list( z==.(z[diffSVec[t1Idx]]) , 
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            #                    N==.(N[diffSVec[t1Idx]]) )) ,  
            #       adj=c( (z[diffSVec[t1Idx]]/N[diffSVec[t1Idx]]-xLim[1])/ 
            #                (xLim[2]-xLim[1]),-3.25) , col="red" ) 
          } else if ( t1Idx < t2Idx ) { 
            par( mar=c(3,1.5,3,1.5) , mgp=c(2.0,0.7,0) , pty="m" ) 
            postInfo = plotPost( mcmcMat[,parName1]-mcmcMat[,parName2] ,  
                                 compVal=compValDiff , ROPE=ropeDiff ,  
                                 cex.main=1.0 , cex.lab=1.25 ,  
                                 xlab=bquote("Difference of "*theta*"'s") ,  
                                 main=paste(  
                                   s[diffSVec[t1Idx]] ,  
                                   " (",c[diffSVec[t1Idx]],")" , 
                                   "\n -", 
                                   s[diffSVec[t2Idx]] ,  
                                   " (",c[diffSVec[t2Idx]],")" ) ) 
            # points( z[diffSVec[t1Idx]]/N[diffSVec[t1Idx]] 
            #         - z[diffSVec[t2Idx]]/N[diffSVec[t2Idx]] , 0 ,  
            #         pch="+" , col="red" , cex=3 ) 
          } 
        } 
      } 
      if ( !is.null(saveName) ) { 
        saveGraph( file=paste0(saveName,"ThetaDiff",compIdx), type=saveType) 
      } 
    } 
  } 
} 
 
#===============PRELIMINARY FUNCTIONS FOR POSTERIOR INFERENCES===============
===== 
 
myData <- read.csv("covid_brazil_final.csv") 
describe(myData) 

names(myData)[3] <- "covid.results" 
myData$covid.results <- as.numeric(as.factor(myData$covid.results)) - 1 # To 
get 0/1 instead of 1/2; positive = 1; negative = 0 
 
#check for missing values 
sum(is.na(myData)) 

## [1] 0 

zName = "covid.results" # column name for 0,1 values 
sName = "Patient.ID" # column name for subject ID 
cName = "Age.group" 
 
myData$Age.group= 0 
myData$Age.group[which(myData$Patient.age.quantile < 5)] <- 1  
myData$Age.group[which(myData$Patient.age.quantile > 4)] <- 2  
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myData$Age.group[which(myData$Patient.age.quantile > 9)] <- 3  
myData$Age.group[which(myData$Patient.age.quantile > 14)] <- 4 
 
myData$Age.group <- factor(myData$Age.group, 
                    levels = c(1,2,3, 4), 
                    labels = c("Age Group 1", "Age Group 2", "Age Group 3", "
Age Group 4")) 
 
write.csv(myData, "myData.csv" ) 
 
tab <- table(myData$Age.group, myData$covid.results) 
tab <- cbind(tab, Total = rowSums(tab)) 
 

numAdaptInSteps = 8000 ; numBburnInSteps=8000; numSavedSteps=8000 ; thinSteps
=800; nChains = 3 
 
 
startTime = proc.time() 
 
 
mcmcCoda = genMCMC( data=myData ,  
                    zName=zName, sName=sName, cName=cName, 
                    numSavedSteps=numSavedSteps ,   useRunjags = TRUE, 
                    thinSteps=thinSteps , burnInSteps = numBburnInSteps , ada
ptSteps = numAdaptInSteps ,nChains = nChains) 

stopTime = proc.time() 
duration = stopTime - startTime 
show(duration) 

#save.image(file="rEnvironment_800Thin_8thousands_Age_trial3.RData") 
#load(file="rEnvironment_800Thin_8thousands_Age_trial3.RData") 
 
#----------------------------------------------------------------------------
---  
# Display diagnostics of chain, for specified parameters: 
# 
#-------------------------  
parameterNames = varnames(mcmcCoda) # get all parameter names for reference 
for ( parName in c("omega[1]","omega[2]","omega[3]","omega[4]","omegaO","kapp
a[1]","kappa[2]","kappa[3]","kappa[4]","kappaO","theta[1]","theta[2]","theta[
3]") ) {  
  diagMCMC( codaObject=mcmcCoda , parName=parName)  
} 
 
# Get summary statistics of chain: 
 
summaryInfo = smryMCMC( mcmcCoda , compVal=NULL ,  
                        diffSVec=c(9,19, 29,39) ,  
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                        diffCVec=c(1,2,3,4) ,  
                        compValDiff=0.0) 

# Display posterior information: 
plotMCMC( mcmcCoda , data=myData ,  
          zName=zName, sName=sName, cName=cName,  
          compVal=NULL , 
          diffCList=list( c(1,2) , 
                          c(1,3) , 
                          c(1,4), 
                          c(2,3), 
                          c(2,4), 
                          c(3,4)) , 
          diffSList=list( c(8,7), 
                          c(8,9) , 
                          c(9,11)) , 
                          compValDiff=0.0) #ropeDiff = c(-0.05,0.05)) 

write.csv(summaryInfo, "summaryInfoHierarchicalAge_trial16.csv" ) 

 

# ============ Predictive check ============ 
confusionMatrix <- function(resp, pred){ 
  #if only one class is predicted, there is no accuracy at all 
  if(dim(table(pred))==1) 
  {   
    return(list(accuracy=0, AUC = 0)) 
  }   
  else 
  {   
     
    classRes <- data.frame(response = resp , predicted = pred) 
    conf = xtabs(~ predicted + response, data = classRes) 
     
    accuracy = sum(diag(conf))/sum(conf) 
    accuracy 
    precision = conf[1,1]/(conf[1,1]+conf[1,2]) 
    precision 
    recall = conf[1,1]/(conf[1,1]+conf[2,1]) 
    recall 
    Fscore = 2*((precision*recall)/(precision+recall)) 
    Fscore 
    tpr = conf[1,1]/(conf[1,1]+conf[2,1]) 
    tnr = conf[2,2]/(conf[2,2]+conf[1,2]) 
    AUC = (tpr + tnr) /2 
    return(list(accuracy = accuracy, precision = precision, recall = recall, 
Fscore = Fscore, AUC=AUC,conf = conf )) 
     
  } 
} 



MATH2269 Applied Bayesian Statistics 

73 
 

 
# Searching threshold between 0.1 to 0.95  
thresholds <- seq(0.1, 0.95, 0.05) 
cf <- array(NA,dim =c(length(thresholds),3)) 
for (i in 1:(length(thresholds))){ 
  predProbs <- summaryInfo[11:608,3]#summaryInfo[9:208,3] 
  predcovidResults <- array(1, 598)#array(1, 200) 
  preds <- data.frame(name = myData$Patient.ID, probPositive = predProbs, cov
idResultPred = predcovidResults, covidResultActual = myData$covid.results) 
  preds$covidResultPred[which(preds$probPositive < thresholds[i])] <- 0 # App
ly each threshold to estimate those not survived 
  #write.csv(preds, paste("pred_", i, ".csv" )) 
  print(paste("i=", i, "thresholds", thresholds[i], "dimension", dim(table(pr
eds$covidResultPred)))) 
  confusionMatrix(resp = preds$covidResultActual, pred = preds$covidResultPre
d) 
  cf[i,3] <- confusionMatrix(resp = preds$covidResultActual, pred = preds$cov
idResultPred)$accuracy 
  cf[i,2] <- confusionMatrix(resp = preds$covidResultActual, pred = preds$cov
idResultPred)$AUC 
  cf[i,1] <- thresholds[i] 
} 

# Searching threshold between 0.01 to 0.2  
# Searching threshold between 0.01 to 0.15 - for Omega prior  
 
thresholds <- seq(0.01, 0.2, 0.01) 
thresholds <- seq(0.01, 0.15, 0.005) 
 
cf <- array(NA,dim =c(length(thresholds),3)) 
for (i in 1:(length(thresholds))){ 
  predProbs <- summaryInfo[11:608,3]#summaryInfo[9:208,3] 
  predcovidResults <- array(1, 598)#array(1, 200) 
  preds <- data.frame(name = myData$Patient.ID, probPositive = predProbs, cov
idResultPred = predcovidResults, covidResultActual = myData$covid.results) 
  preds$covidResultPred[which(preds$probPositive < thresholds[i])] <- 0 # App
ly each threshold to estimate those not survived 
  #write.csv(preds, paste("pred_", i, ".csv" )) 
  print(paste("i=", i, "thresholds", thresholds[i], "dimension", dim(table(pr
eds$covidResultPred)))) 
  confusionMatrix(resp = preds$covidResultActual, pred = preds$covidResultPre
d) 
  cf[i,3] <- confusionMatrix(resp = preds$covidResultActual, pred = preds$cov
idResultPred)$accuracy 
  cf[i,2] <- confusionMatrix(resp = preds$covidResultActual, pred = preds$cov
idResultPred)$AUC 
  cf[i,1] <- thresholds[i] 
} 
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predProbs <- summaryInfo[11:608,3]#summaryInfo[9:208,3] 
predcovidResults <- array(1, 598)#array(1, 200) 
preds <- data.frame(name = myData$Patient.ID, Age.group=myData$Age.group,   p
robPositive = predProbs, covidResultPred = predcovidResults, covidResultActua
l = myData$covid.results) 
preds$covidResultPred[which(preds$probPositive < 0.18)] <- 0 # Apply threshol
d of 0.135 to estimate those not survived 
confusionMatrix(resp = preds$covidResultActual, pred = preds$covidResultPred) 

preds$label= 0 
preds$label[which(preds$Age.group=="Age Group 1" & preds$covidResultActual == 
0)] <- 1  
preds$label[which(preds$Age.group=="Age Group 1" & preds$covidResultActual == 
1)] <- 2  
preds$label[which(preds$Age.group=="Age Group 2" & preds$covidResultActual == 
0)] <- 3  
preds$label[which(preds$Age.group=="Age Group 2" & preds$covidResultActual == 
1)] <- 4  
preds$label[which(preds$Age.group== "Age Group 3" & preds$covidResultActual =
= 0)] <- 5  
preds$label[which(preds$Age.group=="Age Group 3" & preds$covidResultActual == 
1)] <- 6  
preds$label[which(preds$Age.group=="Age Group 4" & preds$covidResultActual == 
0)] <- 7  
preds$label[which(preds$Age.group=="Age Group 4" & preds$covidResultActual == 
1)] <- 8  
 
 
for(i in 1:8) 
{ 
  minNum=min(preds[preds$label==i,]$probPositive) 
  maxNum=max(preds[preds$label==i,]$probPositive) 
  print(paste(minNum, maxNum)) 
 
}   

preds$label <- factor(preds$label, 
                       levels = c(1,2,3,4,5,6,7,8), 
                       labels = c("Age Group 1 -", "Age Group 1 +", 
                                  "Age Group 2 -", "Age Group 2 +", 
                                  "Age Group 3 -", "Age Group 3 +", 
                                  "Age Group 4 -", "Age Group 4 +")) 
 
write.csv(preds, paste("pred_final_trial16", ".csv" )) 
 
a <- ggplot(preds, aes(x = probPositive)) 
a + geom_histogram(aes(color = label, fill = label),bins = 100, 
                   alpha = 0.4, position = "identity") + 
  geom_density(aes(y=..count../500,color= label), size = 1) + 
  scale_fill_manual(values = c("#98c068", "#287028", "#f4d1d7", "#802939", 
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                               "#63bce5", "#114da9", "#fff897", "#f8e000")) + 
  scale_color_manual(values = c("#98c068", "#287028", "#f4d1d7", "#802939", 
                                "#63bce5", "#114da9", "#fff897", "#f8e000")) 
+ 
  ggtitle(label="Distribution of patients (mode of +ve probability) for diffe
rent age groups", subtitle="(modeW=0.1, concentrationW=100, modeK=10, s.d.K=2
)") + 
  xlab("Positive Probability") + ylab("Count") + 
  theme(plot.title = element_text(hjust = -0.3, size=16),plot.subtitle = elem
ent_text(hjust = 0.5, size=14)) 
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