MATH2269 Semester 2, 2020 – Applied Bayesian Analysis

Using Bayesian multiple linear regression to predict Melbourne properties sales price

Assignment 2

Millie Woo (s3806940)

<u>Contents</u>

1. Introduction	6
2. Visualization of the dataset, sampling, distributions and modelling	6
[i] - dataset	6
[ii] - sampling	12
[iii] – distribution and modelling	13
Scenario 1 – dependent variable and error of the regression model with gamma distribution	14
Scenario 2 – dependent variable and error of the regression model with exponential distribution	17
3. Results from JAGS on the sample dataset	
Scenario 1 – Gamma model	
Scenario 2 – Exponential model	
Comparison of the regression models	22
4. Comparison and Analysis	25
Different parameter values on normal prior of the model	25
Representativeness, accuracy and efficiency	
Sample vs whole dataset	

5. Conclusion	45
5. Conclusion	47
[A1] Explanation on the degree of belief in normal and gamma prior settings	47
[A2] Import packages and data preparation	49
[A2] Import packages and data preparation [A3] Generate descriptive statistics	49
[A4] Compare the distribution of dependent variable between sample and full dataset	
[A5] Overlaying gamma and exponential distribution on the histogram of likelihood of dependent variable (properties) of sample dataset	
[A6] Functions to invoke JAGS to run MCMC and relevant diagnostic and summary plots	54
[A7] Running sample dataset	54
[A7i] Running sample dataset for exponential model	67
[A7ii] Running sample dataset for gamma model	68
[A8] Running full dataset	68
[A8i] Running sample dataset for exponential model	69
[A8ii] Running sample dataset for gamma model	
[A9] Goodness of fit	71
[A9i] exponential model	71
[A9i] exponential model [A9ii] gamma model	72
[A10] Diagnostic plots of gamma model on full dataset	73
[A11] Diagnostic plots of exponential model on full dataset	

Table of Figures

Figure 1 - PairPlots of all the variables in the dataset
--

Figure 2 - Relationship of independent variables (only discrete variables)	
Figure 3 - Relationships between Sales Price and Area grouped by each Discrete Variable	
Figure 4 - Resemblance of the sample data on sales price distribution	
Figure 5 - Histogram of Sales Price overlayed with exponential and gamma distribution	
Figure 6 - Model diagram for multiple linear regression with gamma distributed y _i and ε	
Figure 7 - Model diagram for multiple linear regression with exponential distributed yi and ε	
Figure 8 - Posterior distribution of Betas in multiple linear regression with gamma distributed yi and ε (with in	
prior)	
Figure 9 - Posterior distribution of Betas in multiple linear regression with exponential distributed yi and ε (with	
prior)	
Figure 10 – R ² and Predictions from different models	22
Figure 11 - Comparison of observe sample data and posterior distribution of y _i	
Figure 12 - Trial 1	
Figure 13 - trial 7	
Figure 14 - trial 13	
Figure 15 - Comparison of representativeness and accuracy	35
Figure 16 - Posterior distribution for prediction in Gamma Model	40
Figure 17 – Posterior distribution for prediction in Exponential model	40
Figure 18 - Posterior distribution for coefficient in Gamma model	41
Figure 19 - Posterior distribution for coefficient in exponential model	41
Figure 20 - Comparison of observed data and posterior distribution of yi in gamma model	42
Figure 21 - Comparison of observed data and posterior distribution of y _i in exponential model	42
Figure 22 - Pairplots of gamma model	
Figure 23 - Pairplots of exponential model	
Figure 24 - Concentration and degree of belief for Normal prior	47
Figure 25 - Concentration and degree of belief for Gamma prior	
Figure 26 - diagnostic plot of beta0 (Intercept) of gamma model on full run	73
Figure 27 - diagnostic plot of beta1 (area) of gamma model on full run	74
Figure 28 - diagnostic plot of beta2 (bedrooms) of gamma model on full run	75
Figure 29- diagnostic plot of beta3 (bathrooms) of gamma model on full run	76
Figure 30- diagnostic plot of beta4 (carparks) of gamma model on full run	77
Figure 31- diagnostic plot of beta5 (property type) of gamma model on full run	78
Figure 32 - diagnostic plot of tau (variance) of gamma model on full run	

igure 33 - diagnostic plot of prediction 1 of gamma model on full run	.80
Figure 34 - diagnostic plot of prediction 2 of gamma model on full run	.81
Figure 35 - diagnostic plot of prediction 3 of gamma model on full run	.82
Figure 36 - diagnostic plot of prediction 4 of gamma model on full run	.83
Figure 37 - diagnostic plot of prediction 5 of gamma model on full run	
Figure 38 - diagnostic plot of beta0 (Intercept) of exponential model on full run	
Figure 39 - diagnostic plot of beta1 (Area) of exponential model on full run	
Figure 40 - diagnostic plot of beta2 (bedrooms) of exponential model on full run	
Figure 41 - diagnostic plot of beta3 (bathrooms) of exponential model on full run	
Figure 42 - diagnostic plot of beta4 (Carparks) of exponential model on full run	
Figure 43 - diagnostic plot of prediction 1 of exponential model on full run	
Figure 44 - diagnostic plot of prediction 2 of exponential model on full run	
Figure 45 - diagnostic plot of prediction 3 of exponential model on full run	
Figure 46 - diagnostic plot of prediction 4 of exponential model on full run	.93
Figure 47 - diagnostic plot of prediction 5 of exponential model on full run	

Table of Tables

	-
Table 1 - descriptive statistics of sales price	
Table 2 - descriptive statistics of area	7
Table 3 - Frequency count and proportion on number of bedrooms	8
Table 4 - Frequency count and proportion on number of bathrooms	8
Table 5 - Frequency count and proportion on number of carparks	8
Table 6 - Frequency count and proportion on property type	8
Table 7 - Prediction entries	22
Table 8 - Prediction results calculated from the regression model formula	23
Table 9 - Run time for different models with JAGS	
Table 10 - setting of normal prior for coefficients according to given knowledge on the dataset	25
Table 11 - Trials	
Table 12 - Prediction results calculated from the regression formula (given prior info compare with trial 1) for gamma mode	el

Table 13 - Prediction results calculated from regression formula (given prior info compare with trial 1) for exponential n	nodel
Table 14 - setting of normal prior for coefficients according to given knowledge on the dataset	
Table 15 - apply a board variance on normal prior of β_1	
Table 16 - Prediction results calculated from the regression formula (given prior info compare with trial 1 and 7) for gar	mma
model	
Table 17 - Prediction results calculated from regression formula (given prior info compare with trial 1 and 7) for expone	ential
model	
Table 18 - setting of normal prior for coefficients according to given knowledge on the dataset	
Table 19 - apply a board variance on normal prior of β_1	
Table 20 - Prediction results calculated from the regression formula (given prior info compare with trial 1, 7 and 13) for	
gamma model	
Table 21 - Prediction results calculated from regression formula (given prior info compare with trial 1, 7 and 13) for	
exponential model	
Table 22 - Mode and HDI limits of coefficients for each trial	
Table 23 - Predictions of each trial	
Table 24 - Run time on exponential model	
Table 25 - prediction results on full dataset	
Table 26 - Difference in predictions between full and sample dataset	
Table 27 - correlation between coefficients	

1. Introduction

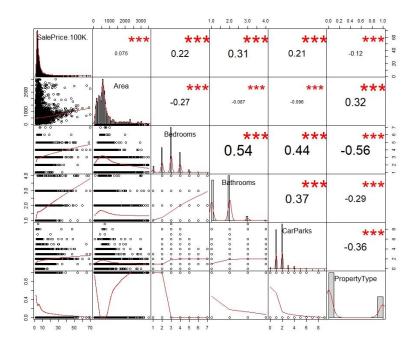
In this assignment, we are using Bayesian analysis to predict property prices in Melbourne. A datafile of several independent variables and one single dependent variable (sale price in AUD \$100,000) are given to us, we are using Bayesian multiple linear regression on the provided information to examine which independent variables are relevant predictors, and then draw statistical inference to determine sale price for new entries which only independent variables are presented. In addition, we are also investigating whether prior knowledge has any impact and compare the predictions we made with different prior parameter values on the same dataset. We would document all our findings in this report.

2. Visualization of the dataset, sampling, distributions and modelling

[i] - dataset

First, the dataset is the likelihood of our model, we should look at the relationship between the variables in the dataset, follow by summary statistics or count of each variable. Please refer to [A3] for the coding of this section.

Figure 1 - PairPlots of all the variables in the dataset



From Figure 1, it shows that there are following variables in the given dataset of 10,000 records:

- 1. SalePrice: Sale price in (100,000 AUD), which is our dependent variables, it is continuous and highly right-skewed, with the mean at 6.09, median at 4.5, ranges from 2.00 and the tail extends to 70. (refers to Table 1)
- 2. Area: Land size in m² of the sold property, which is the only continuous independent variable and it is also highly right-skewed, with the mean at 690.18, median at 568.00, ranges from 50.00 and the tail extends to 3500.00. (refers to Table 2)
- 3. Bedrooms: The number of bedrooms, a discrete variable, ranges from 1 to 7, more than half of the records with 3 bedrooms, refers to Table 3 for details.
- 4. Bathrooms: The number of bathrooms, a discrete variable, ranges from 1 to 4, records mainly with 1 or 2 bathrooms, refers to Table 4 for details.
- 5. CarParks: The number of car parks, a discrete variable, ranges from 0 to 9, records mainly with 1 or 2 carparks, refers to Table 5 for details.
- 6. PropertyType: The type of the property, a discrete variable, (0: House, 1: Unit), 68% of the records are for house, and the rest are for unit, refers to Table 6 for details.

Table 1 - descriptive statistics of sales price

##	Descriptive Statistics myData\$SalePrice.100K. N: 10000									
##		Mean	Median	Std.Dev	Q1	Q3	IQR	Min	Max	
## ##	SalePrice.100K.	6.09	4.50	5.12	3.50	6.55	3.05	2.00	70.00	

Table 2 - descriptive statistics of area

## my	scriptive Data\$Area 10000	Statisti	cs						
## ##		Mean	Median	Std.Dev	Q1	Q3	IQR	Min	Max
## ##	Area	690.18	568.00	564.88	353.00	752.00	399.00	50.00	3500.00

Table 3 - Frequency count and proportion on number of bedrooms

	1 Bedroom(s)	2 Bedroom(s)	3 Bedroom(s)	4 Bedroom(s)	5 Bedroom(s)	6 Bedroom(s)	7 Bedroom(s)
Count	594	2517	4594	2030	237	22	6
proportion	0.0594	0.2517	0.4594	0.203	0.0237	0.0022	0.0006

Table 4 - Frequency count and proportion on number of bathrooms

	1 Bathroom(s)	2 Bathroom(s)	3 Bathroom(s)	4 Bathroom(s)
Count	4499	4976	463	62
proportion	0.4499	0.4976	0.0463	0.0062

Table 5 - Frequency count and proportion on number of carparks

	0 CarParks(s)	1 CarParks(s)	2 CarParks(s)	3 CarParks(s)	4 CarParks(s)	5 CarParks(s)	6 CarParks(s)	7 CarParks(s)	8 CarParks(s)	9 CarParks(s)
Count	175	4246	4814	385	279	48	42	2	8	1
proportion	0.0175	0.4246	0.4814	0.0385	0.0279	0.0048	0.0042	0.0002	0.0008	0.0001

Table 6 - Frequency count and proportion on property type

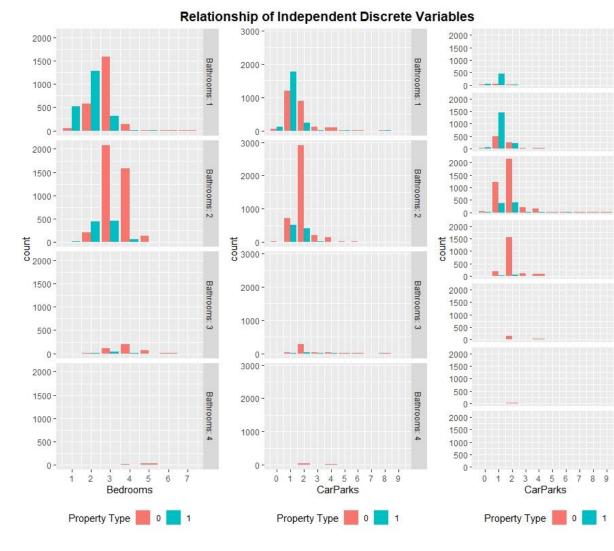
	House	Unit
Count	6838	3162
Proportion	0.6838	0.3162

Correlation among independent variables is considerably low, <most correlated is -0.56 (Bedrooms vs PropertyType)>, we can refer to Figure 2 to examine how the discrete variables are inter-related. For example, in the middle chart, it shows that nearly 3000 records are houses with 2 bedrooms and 2 carparks, as the correlation between bedrooms and carparks is only 0.44, we can picturize there would be a mixture of different number of

bedrooms and carparks, and the chart also confirms there are spread of 3 or 4 bedrooms with low number of carparks and 1 bedroom with high number of carparks. We could then infer there is no collinearity problem with the discrete variables.

From Figure 1, it shows that Area has weak correlation <least correlated is -0.087 (Area vs Bathrooms) to most correlated at 0.32 (Area vs Property Type)> with all the discrete independent variables. This further ensures us there should not be any collinearity issues among all the independent variables.

All independent variables have weak correlation <least correlated is 0.076 (Area vs Sales Price) to most correlated at 0.31 (Bathrooms vs Sales Price)> with the sales price. Thus, individually, there would be a weak linear relationship between each independent variable with sales price. From Figure 3, we can observe the impact on the spread of Area vs Sales Price group by each discrete variable, (e.g. grouping by property type, we can see the data are clearly differentiate into 2 regions, but we are still not sure whether linear relationship exist between "Area + PropertyType" versus sales price). By using JAGS, it would help us to investigate which independent variable(s) are significant to form multiple linear regression with sales price.



Bedrooms: 1

Bedrooms: 2

Bedrooms: 3

Bedrooms: 4

Bedrooms: 5

Bedrooms: 6

Bedrooms: 7

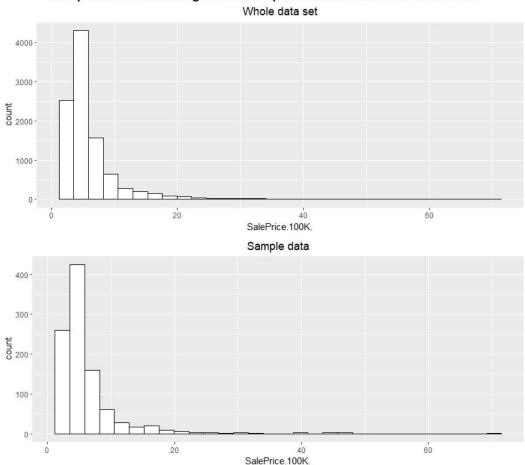
Figure 2 - Relationship of independent variables (only discrete variables)

Figure 3 - Relationships between Sales Price and Area grouped by each Discrete Variable

[ii] - sampling

To run JAGS efficiently, we need to sample a subset of records from the dataset, we have been working with 1000 random samples from the given data as the likelihood of our model. Figure 4 shows the resemblance from the sample dataset on the distribution of sales price. Please refer to [A4] for the coding of this section.

Figure 4 - Resemblance of the sample data on sales price distribution

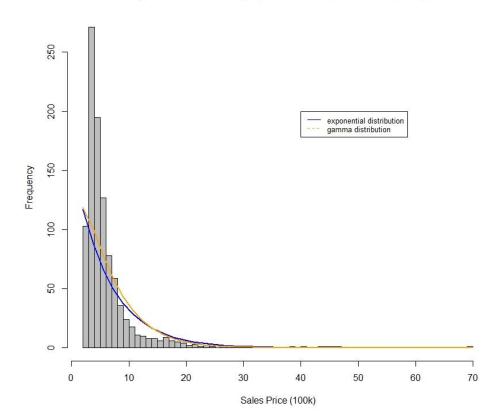


Comparison between original and sample data set on Count of Sales Price

[iii] - distribution and modelling

The observed data on the dependent variable, sales price, is highly skewed in the sample dataset. As the data is continuous, with the domain of $[0, +\infty]$, exponential and gamma distributions are most suitable to fit as the likelihood of the dependent variable. Refer to [A5], we have used the density of exponential distribution function dexp(x, rate = 1/µ)to draw a corresponding exponential distribution, and used the density of gamma distribution function dgamma(x, alpha= μ^2/σ^2 , beta= μ/σ^2)to draw a corresponding gamma distribution, overlaying on top of the histogram of sales price in Figure 5. (where µ is the mean, σ is the standard deviation of the sales price of the sample data set). We have noticed how both distributions fit the dataset by catering the long tail and intercepting middle of the burst on second bar of the histogram.

Figure 5 - Histogram of Sales Price overlayed with exponential and gamma distribution



Histogram of Melbourne properties sales price in AUD\$100,000

We then model the entire given dataset using the multiple linear regression formula as follows:

 $Y=\beta_0+\beta_1X_1+\beta_2X_2+\beta_3X_3+\beta_4X_4+\beta_5X_5+\varepsilon$

Where

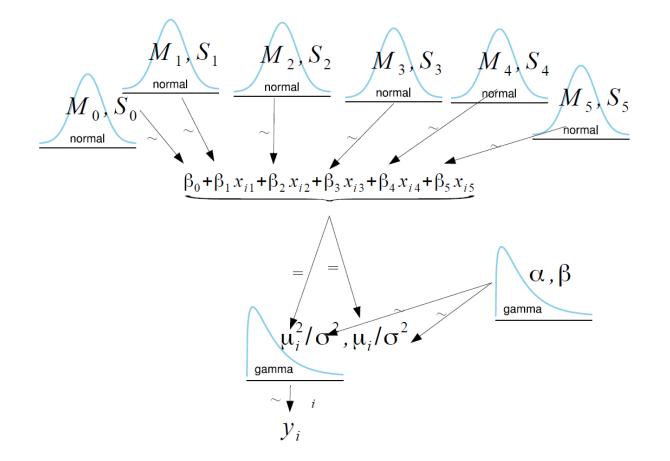
- 1. Y is the dependent variable, sales price in AUD (\$100,000)
- 2. β_0 is the intercept of regression model
- 3. X_1 is the independent variable, area (land size in m² of the sold property), its corresponding slope β_1 shows the effect of unit change in area on the sales price.
- 4. X_2 is the independent variable, bedrooms (the number of bedrooms of the sold property), its corresponding slope β_2 shows the effect of unit change in number of bedrooms on the sales price.
- 5. X_3 is the independent variable, bathrooms (the number of bathrooms of the sold property), its corresponding slope β_3 shows the effect of unit change in number of bathrooms on the sales price.
- 6. X₄ is the independent variable, carparks (the number of carparks of the sold property), its corresponding slope β₄ shows the effect of unit change in number of carparks on the sales price.
- 7. X_5 is the independent variable, property type (0: House, 1: Unit), its corresponding slope β_5 shows the effect of the type change from house to unit on the sales price.
- 8. ε is the error of the regression, the typical distance that the data points fall from the regression line.

Since we have picturized both gamma and exponential distributions are possible fit to the dataset, we can use 2 different scenarios to model the multiple linear regression:

Scenario 1 – dependent variable and error of the regression model with gamma distribution

Figure 6 illustrates the hierarchical dependencies of the Bayesian regression model with gamma distribution modelling the dependent variable and error of the regression. We would call this as gamma model in short from this point forward.

Figure 6 - Model diagram for multiple linear regression with gamma distributed y_i and ε



This model diagram is explained as follows:

- 1. $Y_i \sim \text{Gamma}(\mu_i^2/\sigma^2, \mu_i/\sigma^2)$: Y_i , the observed data point of the dependent variable, sales price in AUD (\$100,000) is a gamma-distributed random value, with 2 parameters, mean (μ_i) and variance(σ^2). Correspondingly, the error (ϵ) of the regression model is also distributed with this gamma distribution.
- 2. $\mu_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5$: μ_i , the central tendency of the gamma distribution in point 1, $Y_i \sim \text{Gamma}(\mu_i^2/\sigma^2, \mu_i/\sigma^2)$. μ_i is transformed to the regression model $\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5$.

- 3. $\sigma^2 \sim \text{Gamma}(\alpha, \beta): \sigma^2$, variance of the gamma distribution in point 1, $Y_i \sim \text{Gamma}(\mu_i^2/\sigma^2, \mu_i/\sigma^2)$. σ^2 is modelled with another gamma distribution where we have set a low concentrated prior: α =0.01 and β =0.01 (Refer to [A1] for detailed explanation), as in regression context, σ^2 does not have any meaningful prior.
- 4. $\beta_0 \sim \text{Normal}(M_0, S_0)$: β_0 , intercept of the regression model, is modelled with a normal distribution where we have set a board normal prior: $M_0 = 0$, $S_0 = 4$ (Refer to [A1] for detailed explanation), as in regression context, intercept does not have any meaningful prior.
- 5. $\beta_1 \sim \text{Normal}(M_1, S_1)$: β_1 , slope of the independent variable, area, is modelled with a normal distribution, it is given with the prior information that every m² increase in land size increases the sales price by AUD90. (**very strong expert knowledge**) Refer to [A1], we would put M₁ and S₁ as below:

	M1	S1
informative prior	90/100000	0.01

6. $\beta_2 \sim \text{Normal}(M_2, S_2)$: β_2 , slope of the independent variable, bedrooms, is modelled with a normal distribution, it is given with the prior information that every additional bedroom increases the sales price by 100,000 AUD. **(weak expert knowledge)** Refer to [A1], we would put M₂ and S₂ as below :

	M2	S2
informative prior	1	2

- 7. $\beta_3 \sim \text{Normal}(M_3, S_3)$: β_3 , slope of the independent variable, bathrooms, is modelled with a normal distribution, as there is no expert knowledge on the bathroom, I would set it with a board normal prior : $M_3 = 0$, $S_3 = 4$.
- 8. $\beta_4 \sim \text{Normal}(M_4, S_4)$: β_4 , slope of the independent variable, carparks, is modelled with a normal distribution, it is given with the prior information that every additional car space increases the sales price by 120,000 AUD. **(strong expert knowledge)** Refer to [A1], we would put M₄ and S₄ as below :

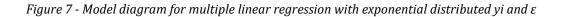
	M4	S4
informative prior	1.2	0.1

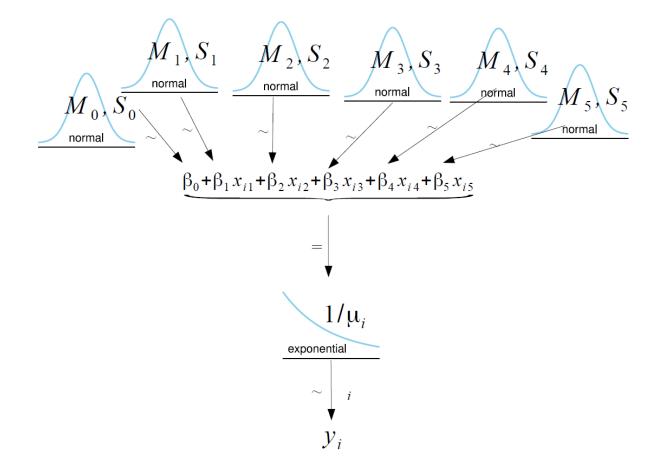
9. $\beta_5 \sim \text{Normal}(M_5, S_5)$: β_5 , slope of the independent variable, property type (0: House, 1: Unit), is modelled with a normal distribution, it is given with the prior information that the sales price of a unit will be 150,000 AUD less than a house on average. **(very strong expert knowledge)**. Refer to [A1], we would put M₅ and S₅ as below :

	M5	S 5
informative prior	-1.5	0.01

Scenario 2 – dependent variable and error of the regression model with exponential distribution

Figure 7 illustrates the hierarchical dependencies of the Bayesian regression model with exponential distribution modelling the dependent variable and error of the regression. We would call this as exponential model in short from this point forward.





This model diagram is explained as follows:

- 1. $Y_i \sim Exp(1/\mu_i^2)$: Y_i , the observed data point of the dependent variable, sales price in AUD (\$100,000) is an exponential-distributed random value, with one parameter, mean (μ_i). Correspondingly, the error (ϵ) of the regression model is also distributed with this exponential distribution.
- 2. $\mu_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5$: μ_i , the central tendency of the exponential distribution in point 1, $Y_i \sim Exp(1/\mu_i^2)$. μ_i is transformed to the regression model $\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5$.

The rest would be exactly the same as point 4 to point 9 in the gamma model.

3. Results from JAGS on the sample dataset

After running MCMC in JAGS (refer to the coding in [A6] and [A7]), we would present the results we have obtained from both scenarios in this section. We would then dive in further to compare the goodness of fit and efficiency on these two models. Diagnostic checks are done before we could review all these results. (Please refer to the section of [Representativeness, accuracy and efficiency] for further details.

Scenario 1 – Gamma model

Posterior distribution plots on Betas (the coefficient of dependent variable)

Figure 8 illustrates that

- 1) β_1 's HDI captures 0 right in the middle of the distribution, this coefficient is insignificant in the model.
- 2) β_2 's HDI does not capture 0, only 0.6% of β_2 's posterior distribution will be greater than 0, 99.4% will be less than 0, β_2 is considered to be significant.
- 3) β_3 's distribution does not capture 0, β_3 is significant.
- 4) β₄'s HDI does not capture 0, only 0.7% of β₂'s posterior distribution will be less than 0, 99.3% will be greater than 0, β₄ is considered to be significant.
- 5) β₅'s HDI does not capture 0, only 2.4% of β₂'s posterior distribution will be greater than 0, 97.6% will be less than 0, β₅ is considered to be significant.

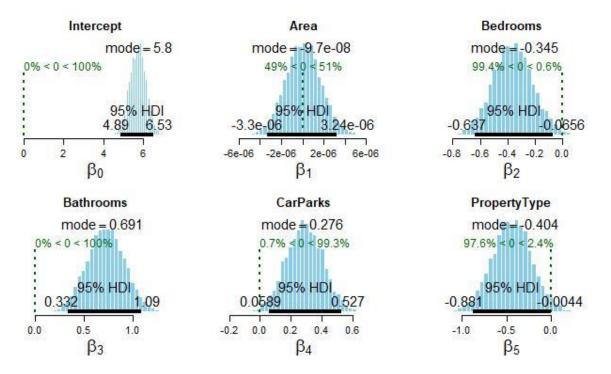


Figure 8 - Posterior distribution of Betas in multiple linear regression with gamma distributed yi and ε (with informative prior)

As the above beta distributions are not skewed, we can use the mode of the distribution to represent the coefficient of our regression model in the following formula:

 $Y = 5.8 - 0.345X_2 + 0.691X_3 + 0.276X_4 - 0.404X_5$

Where

- 1) Y is the dependent variable, sales price in AUD (\$100,000)
- 2) X_1 is the independent variable, area (land size in m² of the sold property)
- 3) X_2 is the independent variable, number of bedrooms
- 4) X_3 is the independent variable, number of bathrooms
- 5) X₄ is the independent variable, number of carparks
- 6) X₅ is the independent variable, property type, 0 indicates the property is a House, 1 indicates the property is a Unit.

This model could also be explained as:

1) Every additional number of bedrooms would result a decrease of 0.345 (in AUD 100,000) in the sales price.

- 2) Every additional number of bathrooms would result an increase of 0.691 (in AUD 100,000) in the sales price.
- 3) Every additional number of car space would result an increase of 0.276 (in AUD 100,000) in the sales price.
- 4) If the property is a unit, the sale price will be 0.404 (in AUD 100,000) less than a house on average

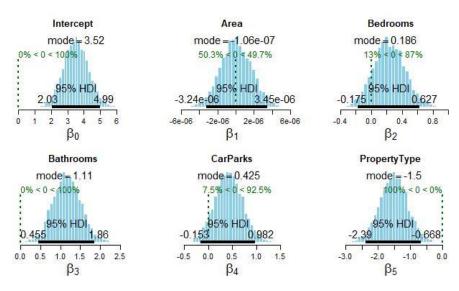
Scenario 2 – Exponential model

Posterior distribution plots on Betas (the coefficient of dependent variable)

Figure 9 illustrates that

- 1) β_1 's HDI captures 0 right in the middle of the distribution, this coefficient is insignificant in the model.
- β₂'s HDI captures 0, but only 13% of β₂'s posterior distribution will be less than 0, 87% will be greater than 0, β₂ is still considered to be significant.
- 3) β_3 's distribution does not capture 0, β_3 is significant.
- 4) β4's HDI captures 0, but only 7.5% of β4's posterior distribution will be less than 0, 92.5% will be greater than 0, β4 is considered to be significant.
- 5) β_5 's distribution does not capture 0, β_5 is significant.

Figure 9 - Posterior distribution of Betas in multiple linear regression with exponential distributed yi and ε (with informative prior)



As the above betas distributions are not skewed, we can use the mode of the distribution to represent the coefficient of our regression model in the following formula:

$Y = 3.52 + 0.186X_2 + 1.11X_3 + 0.425X_4 - 1.5X_5$

Where

- 1) Y is the dependent variable, sales price in AUD (\$100,000)
- 2) X₁ is the independent variable, area (land size in m² of the sold property)
- 3) X₂ is the independent variable, number of bedrooms
- 4) X₃ is the independent variable, number of bathrooms
- 5) X₄ is the independent variable, number of carparks
- 6) X₅ is the independent variable, property type, 0 indicates the property is a House, 1 indicates the property is a Unit.

This model could also be explained as:

- 1) Every additional number of bedrooms would result an increase of 0.186 (in AUD 100,000) in the sales price.
- 2) Every additional number of bathrooms would result an increase of 1.11 (in AUD 100,000) in the sales price.
- 3) Every additional number of car space would result an increase of 0.425 (in AUD 100,000) in the sales price.
- 4) If the property is a unit, the sale price will be 1.5 (in AUD 100,000) less than a house on average

Comparison of the regression models

Predictions and R²

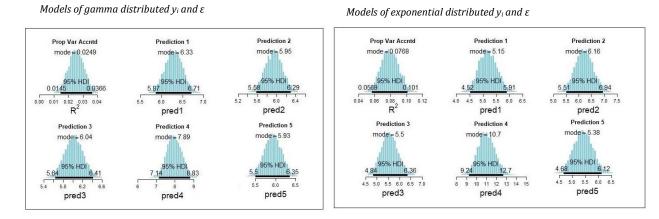
After we have generated the regression models, we can use them to predict new entries where independent variables are given as follows:

Table 7 - Prediction entries

Prediction	Area	Bedrooms	Bathrooms	CarParks	Property Type
1	600	2	2	1	Unit
2	800	3	1	2	House
3	1500	2	1	1	House
4	2500	5	4	4	House
5	250	3	2	1	Unit

Figure 10 shows us the posterior distributions of the above predictions. For example, prediction 1 of the gamma distributed model could be read as within 95% confidence, prediction 1 is in the range of 5.97 to 6.71 (in 100,000 AUD), its mode (most frequent central tendency) is at 6.33 (in 100,000 AUD).

Figure 10 – R² and Predictions from different models



The top left corner of Figure 10 indicates the mode of R^2 of the gamma model is at 0.0249 (with HDI between 0.0145 and 0.0366), which is lower than the exponential model (mode at 0.0768 with HDI between 0.0569 and 0.101), however these figures are all pretty low, which implies that only 2.49%

(gamma) and 7.68% (exponential) of the observed variation can be explained by these models. Thus, even exponential model has a slightly better R², both of these models have a weak linear relationship with the dependent variables.

If we apply the formula of the regression model, and substitute the values of the independent variables of the predictions accordingly (for example, prediction 1: $X_1 = 600$, $X_2 = 2$, $X_3 = 2$, $X_4 = 1$, $X_5 = 1$, apply to the formula of exponential model: $Y = 3.52 + 0^*(600) + 0.186^*(2) + 1.11^*(2) + 0.425^*(1) - 1.5^*(1)$), we would find that the results (highlighted in yellow shown in Table 8) are very close to the central tendency (mode) of the posterior distribution in Figure 10. We found that with the same normal prior settings, exponential model evaluates:

- 1) prediction 4 higher than gamma model
- 2) prediction 1, 3 and 5 lower than gamma model
- 3) prediction 2 similarly to the gamma model

Exponential model → Y= 3.52 + 0.186X₂+ 1.11X₃ + 0.425X₄ – 1.5X₅

Gamma model \rightarrow Y = 5.8 - 0.345X₂+ 0.691X₃ + 0.276X₄ - 0.404X₅

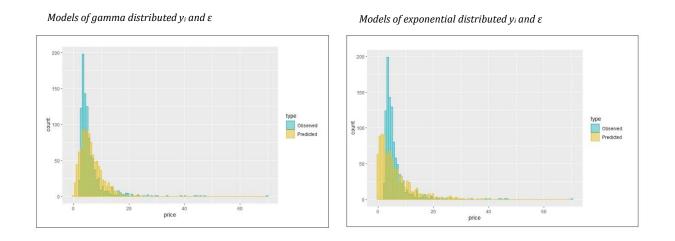
Table 8 - Prediction results calculated from the regression model formula

				Betas			$\sum_{i=1}^{n}$	
Model	β0	β1	β2	β3	β4	β5		
gamma	5.8	0	-0.345	0.691	0.276	-0.404		
exponential	3.52	0	0.186	1.11	0.425	-1.5	*	\downarrow
							Resutls (in 1	00,000 AUD)
Predict	tions	Area	Bedrooms	Bathrooms	CarParks	PropertyType	Gamma	Exponential
1		600	2	2	1	1	6.36	5.04
2		800	3	1	2	0	6.01	6.04
3		1500	2	1	1	0	6.08	5.43
4		2500	5	4	4	0	7.94	10.59
5		250	3	2	1	1	6.02	5.22

Goodness of fit

We then generated 1,000 random samples from the gamma or exponential distribution with the shape derived from the regression formula calculated by the coefficients (mode value of all betas, for gamma distribution, we need posterior distribution of variance too). We then compare these distribution to the sample observed data as shown in Figure 11, we could find that gamma model gives a better goodness of fit with the given prior information. Refer to [A9] for relevant coding.

Figure 11 - Comparison of observe sample data and posterior distribution of y_i



MCMC run time comparison

However, exponential model runs much faster than gamma model as there is one less component for variance as shown in Figure 6 and Figure 7. Table 9 shows the time taken for running the sample and full dataset (which would be discussed in details in the section [Sample vs whole dataset]) on both models. In the sample dataset, elapsed time of the exponential model is 7.23 mins (434.19 seconds), while the gamma model is 23.89 mins (1433.89 seconds), which is 3 times slower than the exponential model. In the full dataset, elapsed time of the exponential model is 8.23 hours (29647.89 seconds), which is 2.4 times slower than the exponential model.

Table 9 - Run	time for	· difførønt	models	with IAGS
Tuble 9 - Kull	ume joi	uijjerent	mouers	with JAUS

	Exponential			Gamma		
	user	system	Elapsed	user	system	Elapsed
Sample dataset of 1,000 records	1.69	0.52	434.19	5.55	0.89	1433.89
Full dataset of 10,000 records	94.14	16.03	12394.14	194.53	66.16	29647.89

4. Comparison and Analysis

Different parameter values on normal prior of the model

Recapture on the given prior knowledge:

- 1. every m² increase in land size increases the sales price by AUD90. (very strong expert knowledge)
- 2. every additional bedroom increases the sales price by 100,000 AUD. (weak expert knowledge)
- 3. No expert knowledge on bathrooms.
- 4. every additional car space increases the sales price by 120,000 AUD. (strong expert knowledge)
- 5. sales price of a unit will be 150,000 AUD less than a house on average. (very strong expert knowledge).

We have set the following values for our normal prior:

Table 10 - setting of normal prior for coefficients according to given knowledge on the dataset

	M1	S ₁	M ₂	S2	M3	S ₃	M4	S4	M 5	S ₅
values	90/100,000	0.01	1	2	0	4	1.2	0.1	-1.5	0.01

S_i is adjusted according to the degree of belief in the prior knowledge. In this section, we are investigating the impact on the regression model when different values are applied to S_i

First, we want to see how the regression model will look like without any prior knowledge (Trial 1). Then from Figure 8 and Figure 9, we have observed that β_1 is insignificant in both models, from an extensive search by applying different values to S_1 , we found that we can turn β_1 to significant in the regression model (Trial 7). Similarly, we would also apply different values to S_2 (trial 13), S_4 (trial 14) and S_5 (trial 15) while retaining the same values for other parameters to find a more desired or significant β_2 , β_4 and β_5 respectively. We have performed the following trials:

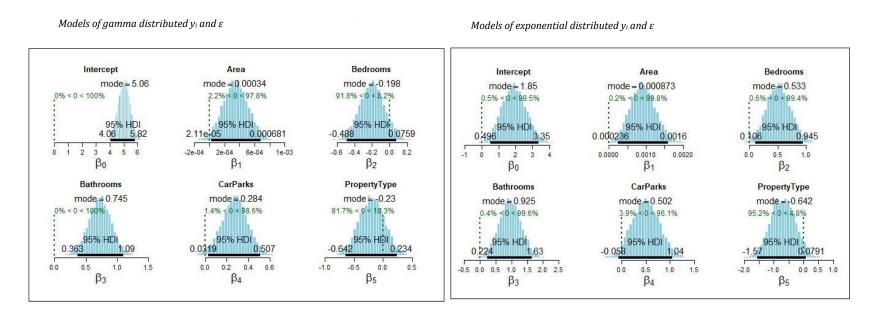
Table 11 - Trials

	M1	S ₁	M2	S ₂	M3	S ₃	M4	S 4	M5	S 5
Trial 1	0	4	0	4	0	4	0	4	0	4
Trial 2	90/100,000	0.1	1	2	0	4	1.2	0.1	-1.5	0.01
Trial 3	90/100,000	1	1	2	0	4	1.2	0.1	-1.5	0.01
Trial 4	90/100,000	2	1	2	0	4	1.2	0.1	-1.5	0.01
Trial 5	90/100,000	4	1	2	0	4	1.2	0.1	-1.5	0.01
Trial 6	90/100,000	20	1	2	0	4	1.2	0.1	-1.5	0.01
Trial 7	90/100,000	100	1	2	0	4	1.2	0.1	-1.5	0.01
Trial 8*	90/100,000	0.01	1	4	0	4	1.2	0.1	-1.5	0.01
Trial 9*	90/100,000	0.01	1	20	0	4	1.2	0.1	-1.5	0.01
Trial 10*	90/100,000	0.01	1	100	0	4	1.2	0.1	-1.5	0.01
Trial 11	90/100,000	0.01	1	0.5	0	4	1.2	0.1	-1.5	0.01
Trial 12	90/100,000	0.01	1	0.01	0	4	1.2	0.1	-1.5	0.01
Trial 13	90/100,000	0.01	1	0.001	0	4	1.2	0.1	-1.5	0.01
Trial 14	90/100,000	0.01	1	2	0	4	1.2	0.01	-1.5	0.01
Trial 15	90/100,000	0.01	1	2	0	4	1.2	0.1	-1.5	0.005

N.B. trial 8 – 10 were only performed on the exponential model (at that time I was searching for the direction to turn β_2 more significant, after I found that we need to decrease S₂ instead of increasing S₂ to turn β_2 more significant, I didn't perform those trials on increasing S₂ for gamma model). There are interesting differences in trial 1, 7 and 13, we would further discuss these trials.

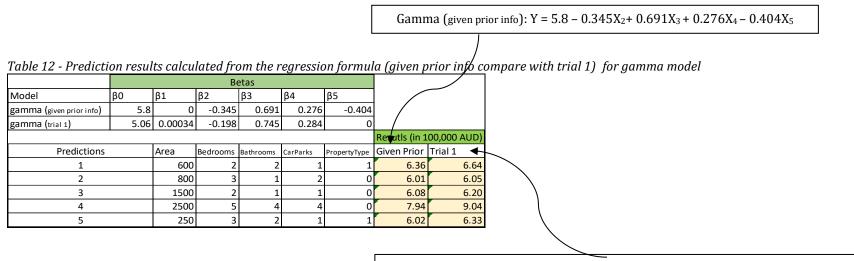
First, lets look at trial 1, refer to Figure 12, without any prior information, in the gamma model, $\beta_1 - \beta_4$ are all considered to be significant (0 are all at the edge of the posterior distribution of betas), I would take β_5 as insignificant, as it is not far away from the middle of the posterior distribution. For the exponential model, all betas are all considered to be significant (as 0 are all at the edge of the posterior distribution of betas).

Figure 12 - Trial 1



As the posterior distribution on betas are not skewed, we could take the mode as the coefficients of the regression formula. If we substitute the values of the independent variables of the predictions, and apply accordingly to both the original (given prior knowledge) and newly derived (trial 1) regression formula (refers to Table 12 and

Table 13, we would find that there are only small differences for predictions 1-3 and 5. For prediction 4, both models would project a higher sales price in trial 1. The results (highlighted in yellow) are very close to the central tendency (mode) of the posterior distribution in Table 23.



Gamma (trial 1): Y = 5.06 + 0.00034 X₁ - 0.198X₂ + 0.745X₃ + 0.284X₄

Exponential (given prior info) → Y= 3.52 + 0.186X₂+ 1.11X₃ + 0.425X₄ - 1.5X₅

Table 13 - Prediction results calculated from regression formula (given prior info compare with trial 1) for exponential model

			Bet	as				
Model	β0	β1	β2	β3	β4	β5		
exponential (given prior info)	3.52	0	0.186	1.11	0.425	-1.5		
exponential (trial 1)	1.85	0.000873	0.533	0.925	0.502	-0.642		
							Resutts (in 1	00,000 AUD)
Predictions		Area	Bedrooms	Bathrooms	CarParks	PropertyType	Given Prior	Trial 1
1		600	2	2	1	1	5.04	5.15
2		800	3	1	2	0	6.04	6.08
3		1500	2	1	1	0	5.43	5.65
4		2500	5	4	4	0	10.59	12.41
5		250	3	2	1	1	5.22	5.38

Exponential (trial 1) → Y= 1.85 + 0.000873 X₁ +0.533X₂ +0.925X₃ + 0.502X₄ - 0.642X₅

With the given prior knowledge, β_1 are both insignificant in gamma or exponential model, however, with extensive search, we found that if we retain the same settings for other parameters and only assign a board variance to normal prior of β_1 , it will become significant in both models. In fact, if we refer to Figure 13, all betas turn into significant. Adding the regression formula of these trials onto Table 14 and Table 15, we would find there are only small differences for all the predictions.

Table 11 setting of normal	Inriar for coefficients	according to given	knowledge on the dataset
Table 14 - setting of normal	ε ρειόε τοι τοειμιτιετίτε	accoraing to given	Knowledge on the dutuset

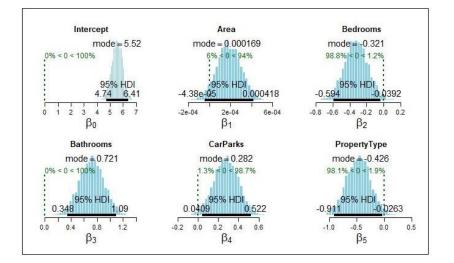
	M1	S ₁	M2	S ₂	M3	S ₃	M4	S 4	M 5	S5
values	90/100,000	0.01	1	2	0	4	1.2	0.1	-1.5	0.01

Table 15 - apply a board variance on normal prior of β_1

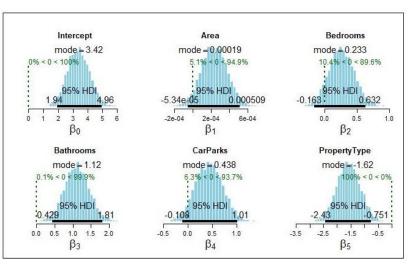
	M1	S ₁	M ₂	S ₂	M3	S ₃	M4	S4	M 5	S 5
values	90/100,000	100	1	2	0	4	1.2	0.1	-1.5	0.01

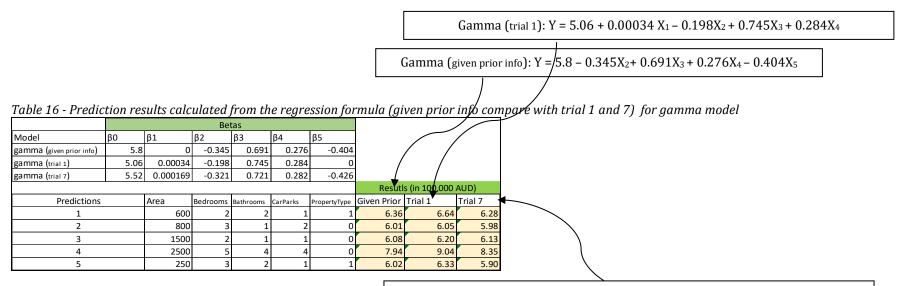
Figure 13 - trial 7

Models of gamma distributed y_i and ε

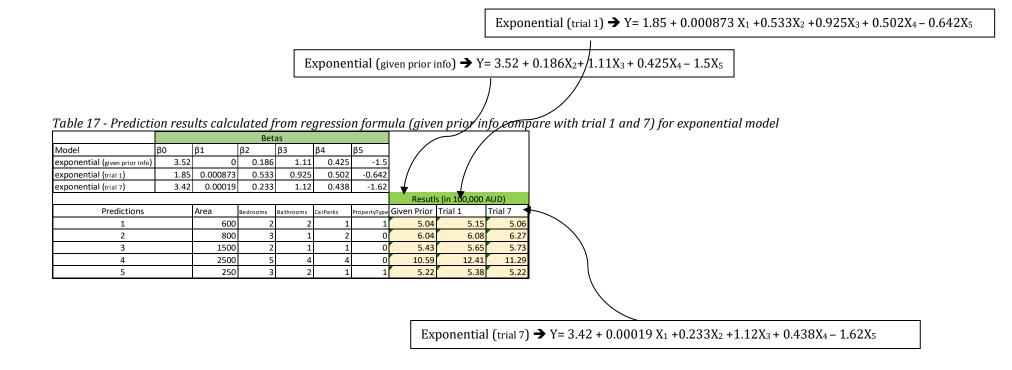


Models of exponential distributed y_i and ε





Gamma (trial 7): Y = 5.52 + 0.000169 X₁ - 0.321X₂ + 0.721X₃ + 0.282X₄ - 0.426X₄



Similarly, With the given prior knowledge, β_2 is significant, but it is negative in the gamma model, with another extensive search, we found that if we retain the same settings for other parameters and assign a small variance the to normal prior of β_2 , it will become positive and significant in the gamma model, and make β_2 further positive in the exponential model as shown in **Error! Reference source not found.** Adding the regression formula of these trials onto Table 20 and Table 21, we would find there are only small differences for all the predictions, except prediction 4 (in exponential model) and 5 (in both models) have been evaluated with higher sales price, as β_2 coefficient is comparatively high and β_5 is positive compare to other trials.

Table 18 - setting of normal prior for coefficients according to given knowledge on the dataset

	M ₁	S ₁	M ₂	S ₂	M ₃	S ₃	M_4	S ₄	M ₅	S ₅
values	90/100,000	0.01	1	2	0	4	1.2	0.1	-1.5	0.01

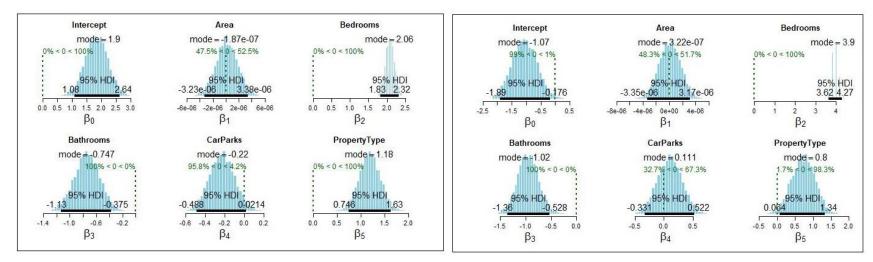
Table 19 - apply a board variance on normal prior of β_1

	M1	S1	M ₂	S ₂	M3	S ₃	M_4	S4	M5	S ₅
values	90/100,000	0.01	1	0.001	0	4	1.2	0.1	-1.5	0.01

Figure 14 - trial 13

Models of gamma distributed y_i and ε

Models of exponential distributed y_i and ε



	Gamma (trial 1): Y = $5.06 + 0.00034 X_1 - 0.198X_2 + 0.745X_3 + 0.284X_4$
Γ	Gamma (given prior info): Y = 5.8 – 0.345X2+ 0.691X3 + 0.276X4 – 0.404X5
Table 20 - Prediction results calculated from the regression formula	a (given prior info compare with trial 1, 7 and 13) for gamma model
Betas Model β0 β1 β2 β3 β4 β5	
gamma (given prior info) 5.8 0 -0.345 0.691 0.276 -0.404 gamma (trial 1) 5.06 0.00034 -0.198 0.745 0.284 0 gamma (trial 7) 5.52 0.000169 -0.321 0.721 0.282 -0.426	
gamma (trial 13) 1.9 0 2.06 -0.747 -0.22 1.18 Predictions Area Bedrooms Bathrooms CarParks PropertyType Given	Resutls (in 100,000 AUD) Prior Trial 1 Trial 7 Trial 13
1 600 2 2 1 1 2 800 3 1 2 0	6.36 6.64 6.28 5.49 6.01 6.05 5.98 6.89 6.08 6.20 6.13 5.05
	7.94 9.04 8.35 8.33 6.02 6.33 5.90 7.55
	Gamma (trial 7): Y = $5.52 + 0.000169 X_1 - 0.321X_2 + 0.721X_3 + 0.282X_4 - 0.426X_4$
	Gamma (trial 13): Y = 1.9 + 2.06X ₂ - 0.747X ₃ - 0.22X ₄ + 1.18X ₅
	Exponential (trial 1) \rightarrow Y= 1.85 + 0.000873 X ₁ +0.533X ₂ +0.925X ₃ + 0.502X ₄ - 0.642X ₅
	or info) \rightarrow Y= 3.52 + 0.186X ₂ +/1.11X ₃ + 0.425X ₄ - 1.5X ₅
Table 21 - Prediction results calculated from regression formula (git Betas Model B0 B1 B2 B3 B4 B5	iven prior info compare with trial 1, 7 and 13) for exponential model
Interfer DP DP <thdp< td=""> DP DP <t< td=""><td></td></t<></thdp<>	
exponential (trial 13) -1.07 0 3.96 -1.02 0.111 0.8 Predictions Area Bedrooms Bathrooms CarParks PropertyType Given Pri	Resutls (in 100,000 AUD)
1 600 2 2 1 5 2 800 3 1 2 0 6	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
4 2500 5 4 4 0 10.	.59 12.41 11.29 15.09 .22 5.38 5.22 9.68
	Exponential (trial 7) \rightarrow Y= 3.42 + 0.00019 X ₁ + 0.233X ₂ + 1.12X ₃ + 0.438X ₄ - 1.62X ₅
E	Exponential (trial 13) \rightarrow Y= -1.07 + 3.96X ₂ - 1.02X ₃ + 0.111X ₄ + 0.8X ₅

٦

Г

From the above calculations, we realized that the significance of the coefficients is altered by the variance of its corresponding normal prior in Bayesian regression model. Change of one coefficient (e.g. β_2 in trial 13) would impact other coefficient values in multiple linear regression. Predictions will change subsequentially, impact are more obvious on predictions with higher or lower than average values in particular independent variables of the affected coefficients.

Table 22 and Table 23 record the mode and HDI for the coefficients and predictions for all the trials. The difference for the predictions is small in all the trials, except:

- 1) Trial 13, prediction 4 and 5 would be evaluated with higher sales price as the coefficient of bedrooms and property type (for gamma model) become dominant
- 2) Trial 14, prediction 4 would be evaluated with higher sales price as the coefficient of car space become dominant (for exponential model)

	Beta 0 Beta 1							Beta 2		Beta 3			Beta 4			Beta 5		
trials	Mode	HDI Low	HDI High	Mode	HDI Low	HDI High	Mode	HDI Low	HDI High	Mode	HDI Low	HDI High	Mode	HDI Low	HDI High	Mode	HDI Low	HDI High
given prior info	3.52	2.03	4.99	-0.0000001	-0.0000032	0.0000034	0.19	-0.17	0.63	1.11	0.46	1.86	0.43	-0.15	0.98	-1.50	-2.39	-0.67
1	1.85	0.50	3.35	0.0008730	0.0002363	0.0016008	0.53	0.11	0.95	0.93	0.22	1.63	0.50	-0.06	1.04	-0.64	-1.57	0.08
2	3.53	1.92	4.97	0.0000001	-0.0000099	0.0000109	0.22	-0.17	0.63	1.17	0.44	1.82	0.40	-0.15	0.97	-1.46	-2.40	-0.67
3	3.59	2.06	5.09	0.0000035	-0.0000301	0.0000361	0.24	-0.17	0.63	1.18	0.47	1.85	0.43	-0.12	0.99	-1.51	-2.38	-0.69
4	3.46	1.97	4.99	0.0000044	-0.0000389	0.0000526	0.23	-0.18	0.62	1.17	0.48	1.89	0.36	-0.14	0.98	-1.55	-2.41	-0.69
5	3.30	2.02	5.02	0.0000078	-0.0000553	0.0000791	0.23	-0.13	0.64	1.19	0.48	1.84	0.38	-0.14	0.99	-1.56	-2.40	-0.67
6	3.55	2.00	4.98	0.0000668	-0.0000798	0.0002037	0.22	-0.17	0.63	1.11	0.46	1.82	0.42	-0.15	0.96	-1.49	-2.39	-0.71
7	3.42	1.94	4.96	0.0001897	-0.0000534	0.0005091	0.23	-0.16	0.63	1.12	0.43	1.81	0.44	-0.11	1.01	-1.62	-2.43	-0.75
8	3.55	2.07	5.11	-0.0000001	-0.0000033	0.0000033	0.21	-0.16	0.61	1.22	0.46	1.84	0.38	-0.16	0.97	-1.47	-2.35	-0.66
9	3.54	1.98	4.97	-0.0000001	-0.0000033	0.0000034	0.25	-0.17	0.62	1.10	0.46	1.84	0.37	-0.12	0.98	-1.59	-2.35	-0.65
10	3.36	2.06	5.05	0.0000002	-0.0000034	0.0000033	0.23	-0.18	0.62	1.17	0.45	1.83	0.43	-0.15	0.97	-1.52	-2.42	-0.73
11	3.50	2.01	5.08	0.0000002	-0.0000032	0.0000034	0.20	-0.16	0.63	1.15	0.45	1.85	0.42	-0.13	1.00	-1.57	-2.32	-0.60
12	2.45	0.87	3.66	0.0000001	-0.0000033	0.0000033	0.89	0.48	1.33	0.69	0.08	1.47	0.32	-0.18	0.90	-0.91	-1.77	-0.14
13	-1.07	-1.89	-0.18	0.000003	-0.0000034	0.0000032	3.96	3.62	4.27	-1.02	-1.36	-0.53	0.11	-0.33	0.52	0.80	0.06	1.34
14	2.59	1.29	4.13	0.0000002	-0.0000032	0.0000033	0.21	-0.17	0.58	0.65	0.05	1.37	1.44	0.93	2.02	-1.19	-1.95	-0.30
15	4.99	3.48	6.57	0.0000003	-0.0000032	0.0000032	-0.02	-0.38	0.38	1.18	0.54	1.92	0.16	-0.33	0.76	-2.65	-3.54	-1.78
given prior info	5.80	4.89	6.53	-0.0000001	-0.0000033	0.0000032	-0.35	-0.64	-0.07	0.69	0.33	1.09	0.28	0.06	0.53	-0.40	-0.88	0.00
1	5.06	4.06	5.82	0.0003399	0.0000211	0.0006808	-0.20	-0.49	0.08	0.74	0.36	1.09	0.28	0.03	0.51	-0.23	-0.64	0.23
2	5.70	4.92	6.53	0.000006	-0.0000098	0.0000110	-0.36	-0.65	-0.07	0.71	0.37	1.12	0.28	0.05	0.53	-0.40	-0.88	-0.01
3	5.81	4.96	6.65	0.0000038	-0.0000280	0.0000380	-0.38	-0.63	-0.08	0.74	0.35	1.09	0.28	0.02	0.51	-0.45	-0.87	0.01
4	5.77	4.94	6.53	0.0000097	-0.0000403	0.0000544	-0.33	-0.65	-0.09	0.70	0.36	1.11	0.32	0.05	0.53	-0.47	-0.85	0.01
5	5.69	4.95	6.61	0.0000130	-0.0000496	0.0000808	-0.35	-0.63	-0.06	0.71	0.34	1.09	0.27	0.04	0.52	-0.39	-0.92	-0.03
6	5.73	4.80	6.49	0.0000607	-0.0000663	0.0001994	-0.34	-0.62	-0.06	0.72	0.34	1.09	0.26	0.05	0.53	-0.47	-0.90	-0.02
7	5.52	4.74	6.41	0.0001694	0.0000438	0.0004177	-0.32	-0.59	0.04	0.72	0.35	1.09	0.28	0.04	0.52	-0.43	-0.91	0.03
11	5.77	4.85	6.50	0.000000	-0.0000032	0.0000035	-0.34	-0.64	-0.08	0.73	0.35	1.11	0.32	0.04	0.53	-0.39	-0.89	-0.01
12	5.18	4.32	5.93	0.0000001	-0.0000032	0.0000033	-0.02	-0.30	0.26	0.51	0.16	0.91	0.22	-0.01	0.47	-0.23	-0.68	0.20
13	1.90	1.08	2.64	-0.0000002	-0.0000032	0.0000034	2.06	1.83	2.32	-0.75	-1.13	-0.37	-0.22	-0.49	0.02	1.18	0.75	1.63
14	5.66	4.85	6.46	0.0000001	-0.0000033	0.0000033	-0.41	-0.69	-0.15	0.68	0.31	1.04	0.46	0.26	0.72	-0.37	-0.84	0.03
15	6.05	5.29	6.91	0.0000000	-0.0000032	0.000033	-0.47	-0.72	-0.18	0.72	0.34	1.08	0.27	0.03	0.50	-0.71	-1.18	-0.30

Table 22 - Mode and HDI limits of coefficients for each trial

Exponential

Gamma

Table 23 - Predictions of each trial

			Pred 1			Pred 2			Pred 3			Pred 4			Pred 5	
		Mode	HDI Low	HDI High	Mode	HDI Low	HDI High	Mode	HDI Low	HDI High	Mode	HDI Low	HDI High	Mode	HDI Low	HDI High
	given prior info	5.15	4.52	5.91	6.16	5.51	6.94	5.50	4.84	6.36	10.74	9.24	12.68	5.37	4.75	6.18
ſ	1	5.22	4.42	5.95	6.08	5.43	6.83	5.78	4.81	6.72	12.31	10.49	14.59	5.29	4.54	6.22
	2	5.15	4.53	5.92	6.23	5.53	6.93	5.59	4.75	6.27	11.02	9.30	12.76	5.39	4.69	6.15
	3	5.15	4.46	5.88	6.21	5.50	6.89	5.53	4.81	6.36	11.03	9.36	12.71	5.40	4.71	6.16
	4	5.23	4.48	5.88	6.25	5.52	6.93	5.57	4.79	6.31	11.04	9.21	12.65	5.42	4.70	6.15
	5	5.16	4.47	5.87	6.15	5.52	6.91	5.50	4.81	6.33	10.90	9.27	12.73	5.35	4.65	6.13
	6	5.12	4.45	5.87	6.16	5.55	6.93	5.61	4.86	6.37	11.07	9.35	12.79	5.31	4.63	6.09
	7	5.04	4.37	5.80	6.31	5.54	6.97	5.71	5.01	6.57	11.25	9.65	13.20	5.22	4.47	5.95
	8	5.13	4.55	5.94	6.12	5.49	6.90	5.56	4.83	6.34	10.92	9.21	12.75	5.33	4.71	6.16
	9	5.11	4.48	5.87	6.11	5.47	6.90	5.57	4.80	6.31	10.93	9.35	12.76	5.38	4.73	6.16
	10	5.15	4.53	5.90	6.20	5.47	6.89	5.47	4.82	6.33	10.94	9.22	12.72	5.44	4.70	6.16
	11	5.22	4.48	5.90	6.16	5.51	6.92	5.60	4.80	6.35	10.88	9.37	12.82	5.38	4.73	6.18
	12	4.96	4.32	5.66	6.42	5.69	7.12	5.11	4.50	5.89	10.98	9.49	12.87	5.84	5.15	6.66
	13	5.75	5.25	6.26	10.04	9.24	10.72	5.96	5.44	6.53	15.18	13.72	16.75	9.65	8.96	10.40
	14	4.82	4.19	5.43	6.91	6.18	7.71	5.21	4.57	5.98	12.42	10.68	14.20	5.07	4.36	5.67
ſ	15	5.04	4.37	5.73	6.57	5.92	7.48	6.44	5.62	7.32	10.73	9.14	12.49	4.99	4.33	5.69
	given prior info	6.33	5.87	6.71	5.95	5.58	6.29	6.04	5.64	6.41	7.89	7.14	8.83	5.93	5.50	6.35
	1	6.32	5.89	6.73	5.89	5.57	6.30	6.10	5.63	6.58	8.94	7.69	9.86	5.98	5.54	6.46
	2	6.28	5.87	6.71	5.96	5.59	6.32	6.01	5.64	6.41	7.90	7.09	8.77	5.93	5.51	6.37
	3	6.32	5.88	6.71	5.91	5.57	6.30	6.04	5.62	6.42	8.02	7.13	8.83	5.93	5.48	6.36
	4	6.27	5.87	6.70	5.97	5.58	6.31	6.03	5.63	6.40	7.96	7.10	8.82	5.93	5.51	6.37
	5	6.29	5.87	6.71	5.95	5.59	6.32	6.00	5.63	6.41	7.92	7.13	8.84	5.91	5.49	6.35
	6	6.27	5.84	6.68	5.92	5.58	6.31	6.06	5.65	6.47	8.08	7.21	9.02	5.88	5.47	6.36
	7	6.19	5.81	6.67	6.01	5.61	6.35	6.19	5.73	6.58	8.32	7.32	9.26	5.85	5.40	6.28
	11	6.24	5.85	6.70	5.97	5.61	6.32	6.04	5.63	6.40	8.13	7.11	8.79	5.90	5.51	6.38
	12	6.13	5.72	6.55	6.05	5.66	6.40	5.83	5.46	6.23	8.05	7.11	8.76	6.15	5.69	6.55
	13	5.46	5.03	5.90	6.85	6.45	7.27	5.01	4.65	5.42	8.31	7.48	9.27	7.53	7.08	8.04
	14	6.24	5.81	6.63	6.02	5.66	6.37	5.96	5.60	6.37	8.22	7.30	8.97	5.83	5.36	6.22
	15	6.13	5.76	6.60	6.01	5.66	6.38	6.17	5.80	6.58	7.80	6.98	8.65	5.76	5.32	6.17

Exponential

Gamma

Representativeness, accuracy and efficiency

In this section, we would thoroughly discuss how to examine good diagnostic plots of all MCMC chains so that we could provide the above analysis on the posterior distributions. Posterior distributions are only valid resulted from MCMC with good diagnostic plots. I initially started running JAGS with the following settings

nChains: 3, adaptSteps: 1000, burnInSteps: 1000, numSavedSteps: 1000, thinSteps: 1

in my first ever attempt on the sample dataset and gradually increased to

nChains: 3, adaptSteps: 1000 burnInSteps: 3000, numSavedSteps: 4000, thinSteps: 20

Figure 15 shows how the diagnostic plots have been improved from the initial settings (left) to my satisfactory level (right) on beta2 as an example.

On the Right,

- 1) 3 chains are all overlapping for the beta2 in the later iterations (top-left plot)
- 2) there are almost no autocorrelations in the chains (from the top-right plot), ESS is very high, which implies we do not have to change the number of thinning steps.
- 3) shrink factor is always less than 1.2 (lower-left plot), which implies there are no orphaned or stuck chains
- 4) In the density plot (lower-right plot), the shape and HDI interval overlap very well. There is no need to adjust any burn-in or saved steps.

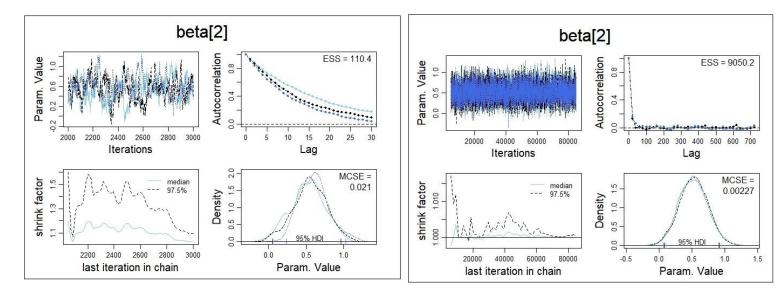


Figure 15 - Comparison of representativeness and accuracy

On the Left

- 1) 3 chains do not overlap at all (top-left plot), which indicates we need more saved steps and burn-in steps,
- 2) there are high autocorrelations in the chains (from the top-right plot), ESS is extremely low, which implies we need to increase the number of thinning steps.
- 3) shrink factor is higher than 1.2 (lower-left plot), which implies there is orphaned or stuck chains
- 4) In the density plot (lower-right plot), the shape and HDI interval do not overlap. We need to adjust the burn-in or saved steps.

I put burn-in steps to 3000 in the tuned model, as I found that some of the parameters have high shrink factor in the diagnostic plots all the way in my initial settings when there are 3000 steps in total (thinning steps = 1, adaptSteps: 1000 + burnInSteps: 1000 + numSavedSteps: 1000 = 3000 steps in total). As I know that saved steps are not enough, I just put the number of saved steps = adaption + burn-in steps for trial-and-error purpose, and luckily I got a very good tuned model.

With the configuration of nchains: 3 adaptsteps: 1000 burnInSteps: 3000 numSavedSteps: 4000 thinsteps: 20, all the parameters would have similar satisfactory diagnostic plots, however JAGS takes much longer to run with these settings. Table 24 shows the runtime of exponential model on sample dataset, it would take 17 minutes on a single run, and I could never obtain any result with these settings on full dataset after an overnight (more than 24 hours) run.

I tried to reduce thinning steps, as I realized the total steps being run would be multiped by number of thinning.

For example, with the satisfactory diagnostic plots, the total steps would be: adaptsteps: 1000 + burnInSteps: 3000 + (numSavedSteps: 4000 * thinSteps: 20) = 84,000 steps

However, I have observed some of the parameters do not have good diagnostic plots when thinning go below 20. Thus I tried to reduce the save steps and gradually found that when saved steps=2000, I would have satisfactory plots within an acceptable run time (around 8 minutes for each trial run on sample data set in exponential model as shown in Table 24), and I could obtain results on full set of data for both gamma and exponential models with these settings. Refer to [A10] and [A11] for the diagnostic plots for all parameters and predictions when we run full dataset on both models.

Number of Chains	Adaption Steps	Burn-in Steps	Saved Steps	Thining	User Time	System Time	Elapsed time	Total time (in minutes)
3	1000	1000	1000	1	0.36	0.89	43.05	0.72
3	1000	1000	1000	5	0.53	0.53	86.45	1.44
3	1000	2000	1000	5	1	0.46	100.57	1.68
3	1000	2000	1000	20	1.82	0.56	281.18	4.69
3	1000	3000	2000	20	2.52	0.89	467.41	7.79
3	1000	3000	4000	20	6.11	0.78	1046	17.43

Table 24 - Run time on exponential model

Sample vs whole dataset

Afterall, we would like to validate if the results we found on the sample dataset (with 1000 records) would have true resemblance on the full dataset. With proper tuning as mentioned in the above sections, and putting the initial value as the mode of beta values from our sample run **<this is extremely important**, we would not obtain any good diagnostic plots without proper initialization on the full run!> (refer to [A8]). We could generate posterior results for both models. As the exponential model took 3.45 hours (12394.14 seconds), and the gamma model took 8.23 hours (29647.89 seconds) on a full run. We only attempted full run on the settings with normal prior as follows:

	M1	S1	M ₂	S ₂	M3	S ₃	M4	S4	M_5	S ₅
values	90/100,000	0.01	1	2	0	4	1.2	0.1	-1.5	0.01

Figure 16 and Figure 17 shows the difference between sample and full dataset of the posterior distribution on predictions and R² in both models. We have obtained the following results on the predictions with full dataset.

Table 25 - prediction results on full dataset

	Prediction 1			Prediction 2			Prediction 3			Prediction 4			Prediction 5		
Model	Mode	HDI Low	HDI High												
Gamma	6.168	6.030	6.311	5.970	5.853	6.076	5.754	5.636	5.887	7.594	7.333	7.910	6.260	6.126	6.410
Exponential	5.721	5.470	5.948	5.587	5.398	5.799	4.823	4.627	5.046	11.191	10.657	11.709	5.970	5.730	6.220

Compare Table 25 with Table 23, We could summarize the difference in

Table 26, and we observed that gamma model has smaller difference in mode compare to exponential model, and the range of HDI is much narrower in the full dataset compare to the sample dataset for both models.

		Pred 1	Pred 2	Pred 3	Pred 4	Pred 5
Gamma Model	Difference in Mode	-0.16	0.02	-0.28	-0.30	0.33
	Range in HDI for sample Data	0.84	0.71	0.77	1.69	0.85
	Range in HDI for full Data	0.28	0.22	0.25	0.58	0.28
Exponential Model	Difference in Mode	0.57	-0.57	-0.68	0.45	0.60
	Range in HDI for sample Data	1.39	1.43	1.51	3.44	1.43
	Range in HDI for full Data	0.48	0.40	0.42	1.05	0.49

Table 26 - Difference in predictions between full and sample dataset

The top left corner of Figure 16 and Figure 17 indicate the mode of R² of the gamma model is at 0.0227 (with HDI between 0.0186 and 0.0264) for the full dataset, which is slightly lower than the sample dataset (mode at 0.0249 with HDI between 0.0145 and 0.0366), the HDI range is also narrower in the full dataset. For exponential model, the mode is at 0.0813 with HDI between 0.0747 and 0.0888, which is slightly higher than the sample dataset. (mode at 0.0768 with HDI between 0.0569 and 0.101), also the HDI range is narrower in the full dataset. However, these figures are all pretty low, which implies that only 2.27% (gamma) and 8.13% (exponential) of the observed variation can be explained by these models, both models still have a weak linear relationship with the dependent variables in the full dataset.

Figure 18 and Figure 19 shows the difference between sample and full dataset of the posterior distribution on coefficients in both models. There are more changes in the Gamma model, as β_2 becomes positive and β_5 is insignificant in the full dataset.

With the full dataset, in gamma model, we found that:

- 1) β_1 's HDI captures 0 right in the middle of the distribution, this coefficient is insignificant in the model.
- 2) β_2 's HDI does not capture 0, only 1% of β_2 's posterior distribution will be less than 0, 99% will be greater than 0, β_2 is considered to be significant.
- 3) β_3 's distribution does not capture 0, β_3 is significant.
- 4) β4's HDI does not capture 0, only 0.4% of β4's posterior distribution will be less than 0, 99.6% will be greater than 0, β4 is considered to be significant.
- 5) β_5 's HDI captures 0 right in the middle of the distribution, this coefficient is insignificant in the model.

With the full dataset, in exponential model, we found that:

- 1) β_1 's HDI captures 0 right in the middle of the distribution, this coefficient is insignificant in the model.
- 2) β_2 's distribution does not capture 0, β_2 is significant.
- 3) β_3 's distribution does not capture 0, β_3 is significant.
- 4) B_4 's distribution does not capture 0, β_4 is significant.
- 5) β_5 's distribution does not capture 0, β_5 is significant.

Figure 20 and Figure 21 show the difference of goodness of fit between sample and full dataset. We have noticed the shape of both predicted and observed histograms are similar in full and sample dataset for both models. As there are more data points, the histograms in the full dataset are smoothly connected with each consecutive bars. Gamma model still give a better goodness of fit in the full dataset.

As all the coefficients are influential on the fitted regression lines, there will be correlations between the generated chains for all the betas. If exponential or gamma distribution is used to model y_i and ε , we would use scaling to minimize the effect. Figure 22 and Figure 23 shows the correlations between the scaled betas for both models on sample and full dataset. We have found that the difference of correlation between sample and full dataset are small. High correlated pairs come up similarly in both models and I have summarized as in Table 27 for reference.

	Gamma	a Model	Exponent	ial Model
	Sample	Full	Sample	Full
zBeta0 (intercept) vs zBeta2 (bedrooms)	-0.61	-0.61	-0.56	-0.64
zBeta0 (intercept) vs zBeta5 (propertyType)	-0.68	-0.69	-0.71	-0.66
zBeta2 (bedrooms) vs zBeta3 (bathrooms)	-0.46	-0.35	-0.31	-0.40
zBeta2 (bedrooms) vs zBeta5 (PropertyType)	0.47	0.45	0.43	0.44

Table 27 - correlation between coefficients

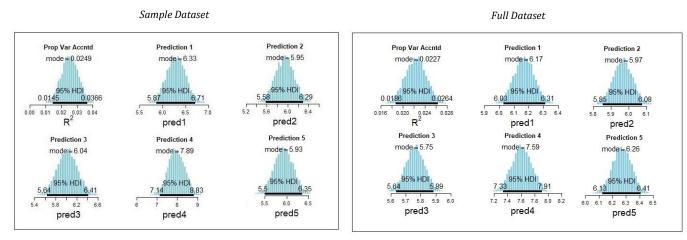
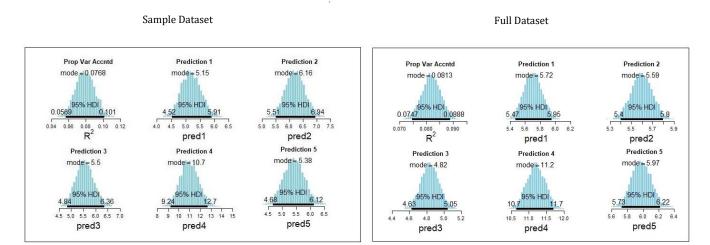
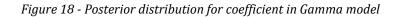


Figure 16 - Posterior distribution for prediction in Gamma Model

Figure 17 – Posterior distribution for prediction in Exponential model





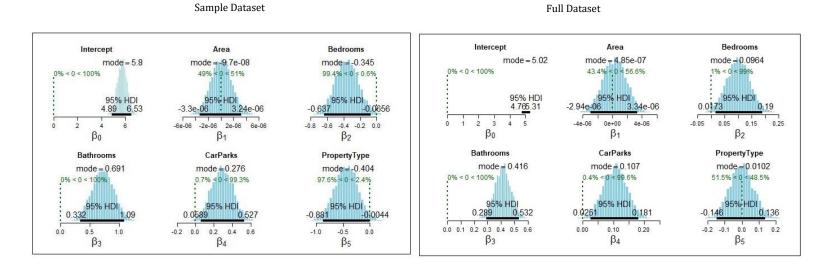
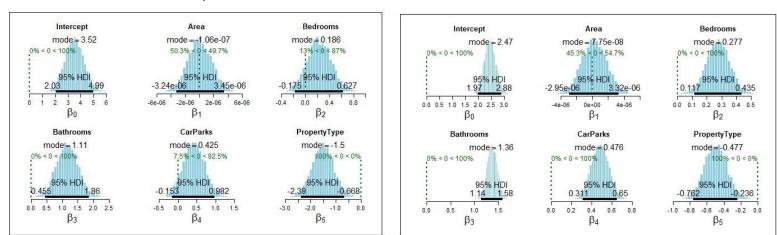


Figure 19 - Posterior distribution for coefficient in exponential model



Sample Dataset

Full Dataset

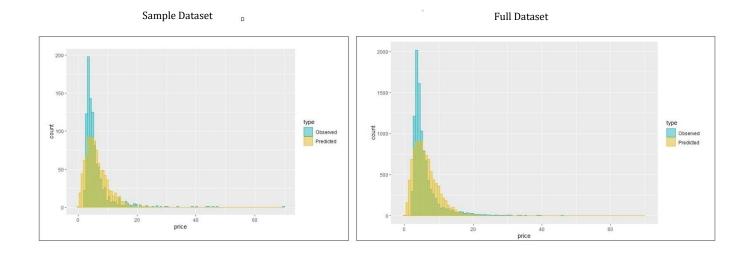


Figure 20 - Comparison of observed data and posterior distribution of y_i in gamma model

Figure 21 - Comparison of observed data and posterior distribution of y_i in exponential model

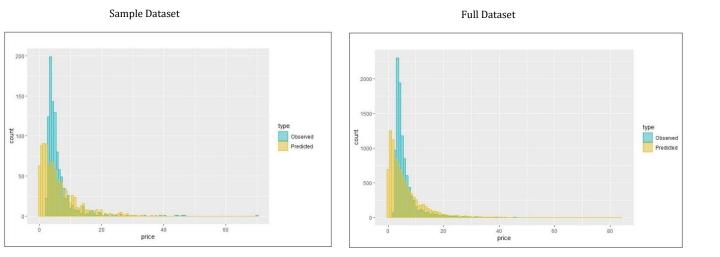
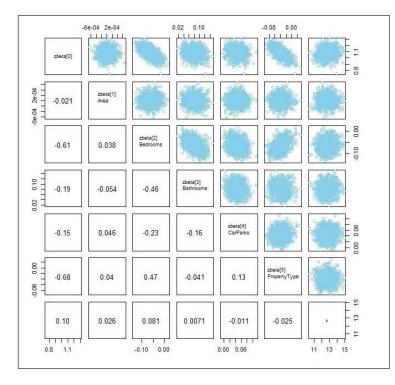
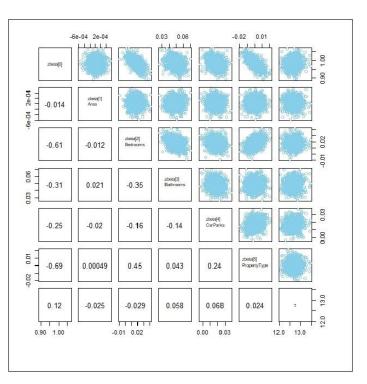


Figure 22 - Pairplots of gamma model



Sample Dataset



Full Dataset

Figure 23 - Pairplots of exponential model

Sample Dataset

Full Dataset

-0.08 -0.04 0.00

0.50

0.35

0.06

0.02

0.08 0.12

0.04

zbeta[5]

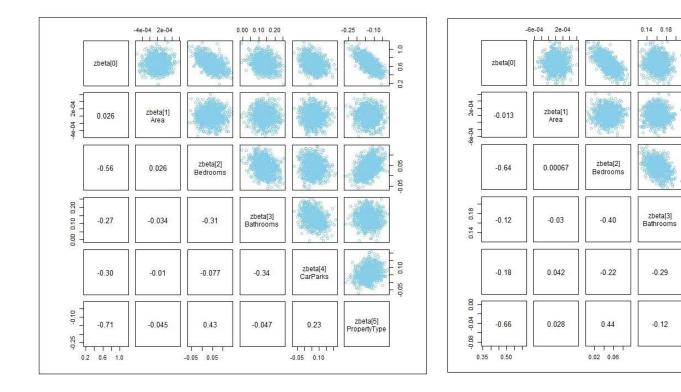
PropertyType

zbeta[4] CarParks

0.15

ТТ

0.04 0.08 0.12



5. Conclusion

In this assignment, we have learnt how to use JAGS to run MCMC to perform multiple linear regression when dataset and prior knowledge is given. We have worked on 2 linear regression models to perform the analysis. With the given prior knowledge of

- 1. every m² increase in land size increases the sales price by AUD90. (very strong expert knowledge)
- 2. every additional bedroom increases the sales price by 100,000 AUD. (weak expert knowledge)
- 3. No expert knowledge on bathrooms.
- 4. every additional car space increases the sales price by 120,000 AUD. (strong expert knowledge)
- 5. sales price of a unit will be 150,000 AUD less than a house on average. (very strong expert knowledge).

In the gamma model, we found that:

- 1) number of bedrooms
- 2) number of bathrooms
- 3) number of carparks

are significant to predict sales price in the entire dataset. In the exponential model, we found that

- 1) number of bedrooms
- 2) number of bathrooms
- 3) number of carparks, and
- 4) property Type

are significant to predict sales price in the entire dataset. Gamma model fits better to the dataset, but it runs much slower than the exponential model.

We have also used our regression models to predict the sales price of following properties accordingly

Prediction	Area	Bedrooms	Bathrooms	CarParks	Property Type
1	600	2	2	1	Unit
2	800	3	1	2	House
3	1500	2	1	1	House
4	2500	5	4	4	House
5	250	3	2	1	Unit

The obtained results are:

	Prediction 1			Prediction 2			Prediction 3			Prediction 4			Prediction 5		
Model	Mode	HDI Low	HDI High												
Gamma	6.168	6.030	6.311	5.970	5.853	6.076	5.754	5.636	5.887	7.594	7.333	7.910	6.260	6.126	6.410
Exponential	5.721	5.470	5.948	5.587	5.398	5.799	4.823	4.627	5.046	11.191	10.657	11.709	5.970	5.730	6.220

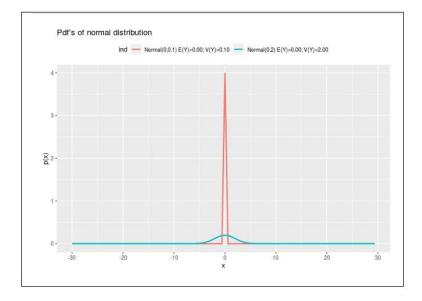
We have also performed extensive analysis to find out that prediction outcomes are subjective to the degree of belief in the prior information.

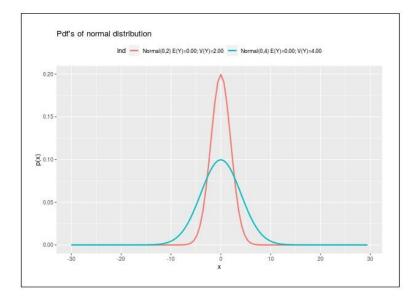
Appendix

[A1] Explanation on the degree of belief in normal and gamma prior settings

For all distribution, decrease in variance will increase concentration which will generate a more informative prior. This is more illustrative for normal distribution, left plot in Figure 24 shows that with same mean (location of the prior, 0 in this figure), the curve is more flatten (thus, less concentrated and less informative) when variance is 2 (in blue) compare to variance is 0.1 (in red). Right plot shows the comparison when variance is 2 (in red) with variance is 4 (in blue). Thus for our normal prior, we would set variance as 4 for non-informative, 2 for week belief, 0.1 for strong belief and 0.01 for very strong belief to distinguish the informativeness.

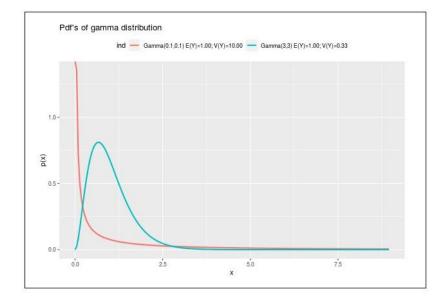
Figure 24 - Concentration and degree of belief for Normal prior

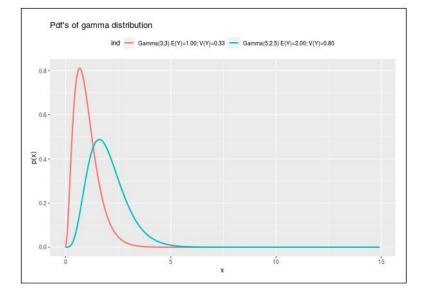




For gamma distribution, it is not as simply illustrated as normal distribution, as the concentration are not shown directly from the plots. For example in the left plot of Figure 25, for Gamma(3, 3), the curve is more flatten, but actually it has higher concentration compares to Gamma(0.1, 0.1), we are just mislead by the visual effect on the scale of the plot. If we plot Gamma(5, 2.5) with Gamma(3,3) on the same plot as shown on the right of Figure 25, we can see Gamma(3,3) has high concentration when the y-axis drops from 1.5 to 0.8, and x-axis extends from 7.5 to 15. Thus setting Gamma(0.01, 0.01) (This is even further left and less concentrated compare to Gamma(0.1, 0.1)), we are imposing a very non-informative prior in gamma distribution.

Figure 25 - Concentration and degree of belief for Gamma prior





[A2] Import packages and data preparation

```
#The following packages are needed in this assignment:
graphics.off() # This closes all of R's graphics windows.
rm(list=ls()) # Careful! This clears all of R's memory!
library(ggplot2)
library(ggpubr)
library(ks)
library(rjags)
library(runjags)
library(nimble)
library("PerformanceAnalytics")
library(psych)
library(GGally)
library(summarytools)
library(knitr)
library(dplyr)
library(data.table)
```

```
setwd("D:/RMIT Master of Analytics/semester 3/MATH2269 Applied Bayesian Statistics/Assignment 2")
source("DBDA2E-utilities.R")
```

```
#Read in the datafile
myData <- read.csv("Assignment2PropertyPrices.csv")</pre>
```

[A3] Generate descriptive statistics

#Pairplots for all variables
chart.Correlation(myData, histogram=TRUE, pch=19)

```
descr(myData$SalePrice.100K., stats = c("mean", "med", "sd", "Q1", "Q3","IQR", "min", "max"), transpose = T
RUE)
descr(myData$Area, stats = c("mean", "med", "sd", "Q1", "Q3","IQR", "min", "max"), transpose = TRUE)
#Count the frequency of discrete variables
countFreq(myData$Bedrooms)
countFreq(myData$Bathrooms, "Bathroom(s)", start=1, end=4)
countFreq(myData$CarParks, "CarPark(s)", start=0, end=9)
countFreq(myData$PropertyType, isPropertyType = TRUE)
# customized function for counting the frequency and proportion of discrete attributes
countFreq = function(field, str1="Bedroom(s)", isPropertyType=FALSE, start=1, end=7) {
```

```
countries = runction(rieta, strip bedroom(s), isropertytype=rkEst, start=1, end=7)
y = rbind(table(field), prop.table(table(field)))
if(isPropertyType)
{
    yColNames <- c('House', 'Unit')
}
else
{
    yColNames <- paste(seq(start, end, 1), str1)
}
yColNames
colnames(y) <- yColNames
rownames(y) <- c("count", "proportion")
kable(format(y, digits = 4, drop0trailing = TRUE))
}</pre>
```

#Barplots to explore the relationship of all independent discrete variables

```
p1 <- ggplot(myData, aes(x=Bedrooms, fill = as.factor(PropertyType))) +</pre>
```

```
geom bar(stat="count", position=position dodge()) +
   facet grid(Bathrooms ~ ., labeller = label both) + theme(legend.position="bottom") + scale x continuous
(breaks=seq(1,7,1)) +
   labs(fill = "Property Type" )
p2 <- ggplot(myData, aes(x=CarParks, fill = as.factor(PropertyType))) +</pre>
  geom bar(stat="count", position=position dodge()) +
 facet grid(Bathrooms ~ ., labeller = label both) + theme(legend.position="bottom") + scale x continuous(b
reaks=seq(0,9,1)) +
  labs(fill = "Property Type")
p3 <- ggplot(myData, aes(x=CarParks, fill = as.factor(PropertyType))) +
  geom bar(stat="count", position=position dodge()) +
  facet grid(Bedrooms ~ ., labeller = label both) + theme(legend.position="bottom") + scale x continuous(br
eaks=seq(0,9,1)) +
  labs(fill = "Property Type")
figure <- ggarrange(p1, p2, p3, nrow = 1, ncol = 3)</pre>
figure <- annotate figure(figure,</pre>
                          top = text grob("Relationship of Independent Discrete Variables", face = "bold",
size = 14))
figure
#Scatter plots to explore the relationship of Sales Price vs Area by each categorical variable
p1 <- ggplot(myData, aes(x=Area, y=SalePrice.100K.,color=as.factor(PropertyType))) +</pre>
  labs(color = "PropertyType") + theme(legend.position="bottom") +
  geom point()
```

figure

[A4] Compare the distribution of dependent variable between sample and full dataset

Histogram for comparing the whole and sample data set on count of sales price

[A5] Overlaying gamma and exponential distribution on the histogram of likelihood of dependent variable (sales price of house properties) of sample dataset

Fitting gamma and exponential distribution as likelihood into the dataset as likelihood

h <- mySample\$SalePrice.100K. %>% hist(col="grey",xlab="Sales Price (100k)", main="Histogram of Melbourne
properties sales price in AUD\$100,000", breaks=50)

```
xfit<-seq(min(mySample$SalePrice.100K.),max(mySample$SalePrice.100K.),length=40)</pre>
```

```
yfit<-dexp(xfit,rate=1/mean(mySample$SalePrice.100K.))
yfit <- yfit*diff(h$mids[1:2])*length(mySample$SalePrice.100K.)
lines(xfit, yfit, col="blue", lwd=2)</pre>
```

```
myAlpha <- (mean(mySample$SalePrice.100K.)^2)/(sd(mySample$SalePrice.100K.)^2)
myBeta <- mean(mySample$SalePrice.100K.)/(sd(mySample$SalePrice.100K.)^2)</pre>
```

[A6] Functions to invoke JAGS to run MCMC and relevant diagnostic and summary plots

```
_____
# customized smryMCM function which would print the summary result of the posterior distribution
smryMCMC_HD = function( codaSamples , compVal = NULL, saveName=NULL) {
  summaryInfo = NULL
 mcmcMat = as.matrix(codaSamples,chains=TRUE)
  paramName = colnames(mcmcMat)
  for ( pName in paramName ) {
   if (pName %in% colnames(compVal)){
     if (!is.na(compVal[pName])) {
       summaryInfo = rbind( summaryInfo , summarizePost( paramSampleVec = mcmcMat[,pName] ,
                                                       compVal = as.numeric(compVal[pName]) ))
     }
     else {
       summaryInfo = rbind( summaryInfo , summarizePost( paramSampleVec = mcmcMat[,pName] ) )
     }
   } else {
     summaryInfo = rbind( summaryInfo , summarizePost( paramSampleVec = mcmcMat[,pName] ) )
   }
  }
  rownames(summaryInfo) = paramName
 # summaryInfo = rbind( summaryInfo ,
```

```
# "tau" = summarizePost( mcmcMat[,"tau"] ) )
if ( !is.null(saveName) ) {
    write.csv( summaryInfo , file=paste(saveName,"SummaryInfo.csv",sep="") )
}
return( summaryInfo )
}
```

customized plotMCMC function which would plot the posterior distribution of each parameter

```
plotMCMC HD = function( codaSamples , data , xName="x" , yName="y" ,
                        showCurve=FALSE , pairsPlot=FALSE , compVal = NULL,
                        saveName=NULL , saveType="jpg", isExp=FALSE) {
 # showCurve is TRUE or FALSE and indicates whether the posterior should
 # be displayed as a histogram (by default) or by an approximate curve.
  # pairsPlot is TRUE or FALSE and indicates whether scatterplots of pairs
     of parameters should be displayed.
  #
  #----
  y = data[,yName]
  x = as.matrix(data[,xName])
 mcmcMat = as.matrix(codaSamples,chains=TRUE)
  chainLength = NROW( mcmcMat )
  zbeta0 = mcmcMat[,"zbeta0"]
 zbeta = mcmcMat[,grep("^zbeta$|^zbeta\\[",colnames(mcmcMat))]
  if ( ncol(x)==1 ) { zbeta = matrix( zbeta , ncol=1 ) }
  if(isExp==FALSE)
  {
   zVar = mcmcMat[,"zVar"]
  }
  beta0 = mcmcMat[,"beta0"]
  beta = mcmcMat[,grep("^beta$|^beta\\[",colnames(mcmcMat))]
  if ( ncol(x)==1 ) { beta = matrix( beta , ncol=1 ) }
  if(isExp==FALSE)
  {
   tau = mcmcMat[,"tau"]
  }
```

```
pred1 = mcmcMat[,"pred[1]"] # Added by Demirhan
pred2 = mcmcMat[,"pred[2]"] # Added by Demirhan
pred3 = mcmcMat[,"pred[3]"] # Added by millie
pred4 = mcmcMat[,"pred[4]"] # Added by millie
pred5 = mcmcMat[,"pred[5]"] # Added by millie
#-----
# Compute R^2 for credible parameters:
YcorX = cor(y, x) # correlation of y with each x predictor
Rsq = zbeta %*% matrix( YcorX , ncol=1 )
#-----
if ( pairsPlot ) {
  # Plot the parameters pairwise, to see correlations:
  openGraph()
  nPtToPlot = 1000
  plotIdx = floor(seq(1, chainLength, by=chainLength/nPtToPlot))
  panel.cor = function(x, y, digits=2, prefix="", cex.cor, ...) {
    usr = par("usr"); on.exit(par(usr))
    par(usr = c(0, 1, 0, 1))
    r = (cor(x, y))
    txt = format(c(r, 0.123456789), digits=digits)[1]
    txt = paste(prefix, txt, sep="")
    if(missing(cex.cor)) cex.cor <- 0.8/strwidth(txt)</pre>
    text(0.5, 0.5, txt, cex=1.25) # was cex=cex.cor*r
  }
  if(isExp==FALSE)
  {
    pairs( cbind( beta0 , beta , tau )[plotIdx,] ,
           labels=c( "beta[0]" ,
                     paste0("beta[",1:ncol(beta),"]\n",xName) ,
                     expression(tau) ) ,
           lower.panel=panel.cor , col="skyblue" )
  }
  else{
    pairs( cbind( beta0 , beta )[plotIdx,] ,
```

```
labels=c( "beta[0]" ,
                     paste0("beta[",1:ncol(beta),"]\n",xName) ) ,
           lower.panel=panel.cor , col="skyblue" )
  }
  if (is.null(saveName) ) {
    saveGraph( file=paste(saveName, "PostPairs", sep=""), type=saveType)
  }
  if(isExp==FALSE)
  {
    pairs( cbind( zbeta0 , zbeta , tau )[plotIdx,] ,
           labels=c( "zbeta[0]" ,
                     paste0("zbeta[",1:ncol(zbeta),"]\n",xName) ,
                     expression(tau) ) ,
           lower.panel=panel.cor , col="skyblue" )
  }
  else{
    pairs( cbind( zbeta0 , zbeta )[plotIdx,] ,
           labels=c( "zbeta[0]" ,
                     paste0("zbeta[",1:ncol(beta),"]\n",xName) ) ,
           lower.panel=panel.cor , col="skyblue" )
  }
  if (is.null(saveName) ) {
    saveGraph( file=paste(saveName,"zPostPairs",sep=""), type=saveType)
  }
}
# Marginal histograms:
decideOpenGraph = function( panelCount , saveName , finished=FALSE ,
                            nRow=2, nCol=3) {
  # If finishing a set:
  if ( finished==TRUE ) {
    if ( !is.null(saveName) ) {
      saveGraph( file=paste0(saveName,ceiling((panelCount-1)/(nRow*nCol))),
```

```
type=saveType)
    }
    panelCount = 1 # re-set panelCount
    return(panelCount)
  } else {
    # If this is first panel of a graph:
    if ( ( panelCount %% (nRow*nCol) ) == 1 ) {
     # If previous graph was open, save previous one:
      if ( panelCount>1 & !is.null(saveName) ) {
        saveGraph( file=paste0(saveName,(panelCount%/%(nRow*nCol))),
                   type=saveType)
      }
      # Open new graph
      openGraph(width=nCol*7.0/3,height=nRow*2.0)
     layout( matrix( 1:(nRow*nCol) , nrow=nRow, byrow=TRUE ) )
      par( mar=c(4,4,2.5,0.5) , mgp=c(2.5,0.7,0) )
    }
    # Increment and return panel count:
    panelCount = panelCount+1
    return(panelCount)
 }
}
# Original scale:
panelCount = 1
if (!is.na(compVal["beta0"])){
  panelCount = decideOpenGraph( panelCount , saveName=paste0(saveName,"PostMarg") )
 histInfo = plotPost( beta0 , cex.lab = 1.75 , showCurve=showCurve ,
                       xlab=bquote(beta[0]) , main="Intercept", compVal = as.numeric(compVal["beta0"]))
} else {
  panelCount = decideOpenGraph( panelCount , saveName=paste0(saveName,"PostMarg") )
 histInfo = plotPost( beta0 , cex.lab = 1.75 , showCurve=showCurve ,
                       xlab=bquote(beta[0]) , main="Intercept")
}
for ( bIdx in 1:ncol(beta) ) {
  panelCount = decideOpenGraph( panelCount , saveName=paste0(saveName,"PostMarg") )
```

```
if (!is.na(compVal[paste0("beta[",bIdx,"]")])) {
   histInfo = plotPost( beta[,bIdx] , cex.lab = 1.75 , showCurve=showCurve ,
                         xlab=bquote(beta[.(bIdx)]) , main=xName[bIdx],
                         compVal = as.numeric(compVal[paste0("beta[",bIdx,"]")]))
 } else{
   histInfo = plotPost( beta[,bIdx] , cex.lab = 1.75 , showCurve=showCurve ,
                         xlab=bquote(beta[.(bIdx)]) , main=xName[bIdx])
 }
}
panelCount = decideOpenGraph( panelCount , saveName=pasteO(saveName, "PostMarg") )
if(isExp==FALSE)
{
 histInfo = plotPost( tau , cex.lab = 1.75 , showCurve=showCurve ,
                       xlab=bquote(tau) , main=paste("Scale") )
}
panelCount = decideOpenGraph( panelCount , saveName=pasteO(saveName,"PostMarg") )
histInfo = plotPost( Rsq , cex.lab = 1.75 , showCurve=showCurve ,
                     xlab=bquote(R^2) , main=paste("Prop Var Accntd") )
panelCount = decideOpenGraph( panelCount , saveName=paste0(saveName,"PostMarg") )
histInfo = plotPost( pred1 , cex.lab = 1.75 , showCurve=showCurve ,
                     xlab="pred1" , main="Prediction 1" ) # Added by Demirhan
panelCount = decideOpenGraph( panelCount , saveName=paste0(saveName,"PostMarg") )
histInfo = plotPost( pred2, cex.lab = 1.75, showCurve=showCurve,
                     xlab="pred2" , main="Prediction 2" ) # Added by Demirhan
panelCount = decideOpenGraph( panelCount , saveName=paste0(saveName,"PostMarg") )
histInfo = plotPost( pred3 , cex.lab = 1.75 , showCurve=showCurve ,
                     xlab="pred3" , main="Prediction 3" ) # Added by Demirhan
panelCount = decideOpenGraph( panelCount , saveName=paste0(saveName,"PostMarg") )
histInfo = plotPost( pred4 , cex.lab = 1.75 , showCurve=showCurve ,
                     xlab="pred4" , main="Prediction 4" ) # Added by Demirhan
panelCount = decideOpenGraph( panelCount , saveName=paste0(saveName,"PostMarg") )
histInfo = plotPost( pred5 , cex.lab = 1.75 , showCurve=showCurve ,
                     xlab="pred5" , main="Prediction 5" ) # Added by Demirhan
panelCount = decideOpenGraph( panelCount , saveName=paste0(saveName,"PostMarg") )
```

```
# Standardized scale:
```

```
panelCount = 1
  panelCount = decideOpenGraph( panelCount , saveName=paste0(saveName, "PostMargZ") )
  histInfo = plotPost( zbeta0 , cex.lab = 1.75 , showCurve=showCurve ,
                     xlab=bquote(z*beta[0]) , main="Intercept" )
  for ( bIdx in 1:ncol(beta) ) {
   panelCount = decideOpenGraph( panelCount , saveName=paste0(saveName,"PostMargZ") )
   histInfo = plotPost( zbeta[,bIdx] , cex.lab = 1.75 , showCurve=showCurve ,
                       xlab=bquote(z*beta[.(bIdx)]) , main=xName[bIdx] )
  panelCount = decideOpenGraph( panelCount , saveName=paste0(saveName, "PostMargZ") )
  if(isExp==FALSE)
  {
   histInfo = plotPost( zVar , cex.lab = 1.75 , showCurve=showCurve ,
                       xlab=bquote(z*tau) , main=paste("Scale") )
  }
  panelCount = decideOpenGraph( panelCount , saveName=paste0(saveName, "PostMargZ") )
 histInfo = plotPost( Rsq , cex.lab = 1.75 , showCurve=showCurve ,
                     xlab=bquote(R^2) , main=paste("Prop Var Accntd") )
  panelCount = decideOpenGraph( panelCount , finished=TRUE , saveName=pasteO(saveName, "PostMargZ") )
}
# customized function to generate the Bayesian model with given sensitivity of the prior
# for either gamma or exp model
writeModel <- function(model = c("gamma", "exp"), informative=FALSE, filename="TEMPmodel.txt",</pre>
beta1Sens="0.1", beta2Sens="2", beta4Sens="1", beta5Sens="0.1"){
  dataString = "
# Standardize the data:
data {
 ysd <- sd(y)
 for ( i in 1:Ntotal ) {
zy[i] <- y[i] / ysd
```

```
}
 for ( j in 1:Nx ) {
   xsd[i] < - sd(x[,i])
   for ( i in 1:Ntotal ) {
      zx[i,j] <- x[i,j] / xsd[j]</pre>
   }
  }
}
if (model == "gamma"){
  modelString1 = "
  model {
   for ( i in 1:Ntotal ) {
      zy[i] ~ dgamma( (mu[i]^2)/zVar , mu[i]/zVar ) #gamma likelihood
} else if (model == "exp") {
  modelString1 = "
  model {
   for ( i in 1:Ntotal ) {
     zy[i] \sim dexp(1/mu[i])
                                                       #exponential likelihood
} else {
  warning('model can only be ("gamma","exp") in this function')
}
modelString2 = "
   mu[i] <- zbeta0 + sum( zbeta[1:Nx] * zx[i,1:Nx] )</pre>
}
н.
if (informative == TRUE){
  priorString0=paste("zbeta0 ~ dnorm( 0 , 1/2^2 )", "\n")
  priorString1= paste("zbeta[1] ~ dnorm( (90/100000)/xsd[1] , 1/(", beta1Sens, "/xsd[1]^2) )", "\n")
  priorString2= paste("zbeta[2] ~ dnorm( 1/xsd[2], 1/(", beta2Sens, "/xsd[2]^2) )", "\n")
  priorString3= paste("zbeta[3] ~ dnorm( 0, 1/4 )", "\n")
  priorString4= paste("zbeta[4] ~ dnorm( 1.2/xsd[4] , 1/(", beta4Sens, "/xsd[4]^2) )", "\n")
```

```
priorString5= paste("zbeta[5] ~ dnorm( -1.5/xsd[5] , 1/(", beta5Sens, "/xsd[5]^2) )", "\n")
  priorString = paste(priorString0, priorString1, priorString2, priorString3, priorString4, priorString5)
}
else{
  priorString = "
  zbeta0 \sim dnorm(0, 1/2^2) \# 1/variance for normal distribution
  zbeta[1] \sim dnorm(0, 1/2^2) \# 1/variance for normal distribution
  zbeta[2] \sim dnorm(0, 1/2^2) \# 1/variance for normal distribution
  zbeta[3] \sim dnorm(0, 1/2^2) \# 1/variance for normal distribution
  zbeta[4] \sim dnorm(0, 1/2^2) \# 1/variance for normal distribution
  zbeta[5] \sim dnorm(0, 1/2^2) \# 1/variance for normal distribution
....
}
if (model == "gamma"){
 modelString3 = "
  zVar ~ dgamma( 0.01 , 0.01 ) #gamma variance
 tau <- zVar * (ysd)^2 #for gamma</pre>
н.
} else {
  modelString3 = "
}
modelString4 = "
 # Transform to original scale:
  beta[1:Nx] <- ( zbeta[1:Nx] / xsd[1:Nx] ) * ysd</pre>
```

```
beta0 <- zbeta0*ysd
```

```
# Compute predictions at every step of the MCMC
for ( i in 1:Nx){
```

```
pred[i] <- beta0 + beta[1] * xPred[i,1] + beta[2] * xPred[i,2] + beta[3] * xPred[i,3] + beta[4] *</pre>
xPred[i,4]+ beta[5] * xPred[i,5]
}
" # close quote for modelString
# Write out modelString to a text file
finalString = paste(dataString, modelString1, modelString2, priorString, modelString3, modelString4)
writeLines( finalString , con=filename )
if (model == "gamma"){
 parameters = c( "zbeta0", "zbeta", "beta0", "beta", "tau", "zVar", "pred") # Here beta is a
vector!
}
else{
 parameters = c( "zbeta0" , "zbeta" , "beta0" , "beta" , "pred") # Here beta is a vector!
}
return (parameters)
}
```

customized function to call jags with parallel run, the result is saved as an RDS object
with the filename prefixed with "coda_" in front of the passed-in saveFile

```
callParaRun <- function(isExp=FALSE, filename="TEMPmodel.txt", saveFile="runsample.RData", parameters,
dataList, initsList, nChains, adaptSteps, burnInSteps, numSavedSteps, thinSteps)
{
    #print configuration
    if(isExp == TRUE)
    {
        print("running Exponential .....")
    }
```

```
else
{
    print("running Gamma .....")
}
```

```
cat(paste("nChains:", nChains, "adaptSteps:", adaptSteps,"burnInSteps:", burnInSteps,"numSavedSteps, "thinSteps:", thinSteps, "\n"))
```

```
startTime = proc.time()
runJagsOut <- run.jags( method="parallel" ,</pre>
                        model=filename,
                        monitor=parameters,
                        data=dataList ,
                        inits=initsList ,
                        n.chains=nChains ,
                        adapt=adaptSteps ,
                        burnin=burnInSteps ,
                        sample=numSavedSteps ,
                        thin=thinSteps , summarise=FALSE , plots=FALSE )
codaSamples = as.mcmc.list( runJagsOut )
stopTime = proc.time()
elapsedTime = stopTime - startTime
show(elapsedTime)
save.image(file=saveFile)
saveRDS(codaSamples, paste(("coda "), saveFile))
```

```
diagMCMC( codaSamples , parName="beta0" )
diagMCMC( codaSamples , parName="beta[1]" )
diagMCMC( codaSamples , parName="beta[2]" )
diagMCMC( codaSamples , parName="beta[3]" )
diagMCMC( codaSamples , parName="beta[4]" )
diagMCMC( codaSamples , parName="beta[5]" )
if(isExp == FALSE)
{
```

```
diagMCMC( codaSamples , parName="tau" )
  }
  diagMCMC( codaSamples , parName="pred[1]" )
  diagMCMC( codaSamples , parName="pred[2]" )
  diagMCMC( codaSamples , parName="pred[3]" )
  diagMCMC( codaSamples , parName="pred[4]" )
  diagMCMC( codaSamples , parName="pred[5]" )
  diagMCMC( codaSamples , parName="zbeta0" )
  diagMCMC( codaSamples , parName="zbeta[1]" )
  diagMCMC( codaSamples , parName="zbeta[2]" )
  diagMCMC( codaSamples , parName="zbeta[3]" )
  diagMCMC( codaSamples , parName="zbeta[4]" )
  diagMCMC( codaSamples , parName="zbeta[5]" )
  return(codaSamples)
}
#______
# customized function to invoke the call parallel run summaryMCMC and plotMCMC function
# for either exponential or gamma function, the result is saved as an RDS object
# with the filename prefixed with "summry" in front of the passed-in saveFile
runAndPlot <- function(isExp=FALSE, informative=FALSE, filename="tempModel.txt",</pre>
                      beta1Sens="4", beta2Sens="4", beta4Sens="4", beta5Sens="4",
                      saveFile="runsample.RData", dataList, initsList, nChains, adaptSteps, burnInSteps,
numSavedSteps, thinSteps)
{
 if(isExp==FALSE)
```

```
{
```

parameters=writeModel(model = "gamma", informative=informative, filename=filename, beta1Sens=beta2Sens=beta2Sens, beta4Sens=beta4Sens, beta5Sens=beta5Sens)

AcodaSample=callParaRun(isExp=FALSE, filename=filename, saveFile=saveFile, parameters, dataList, initsList, nChains, adaptSteps, burnInSteps, numSavedSteps, thinSteps)

```
compVal <- data.frame("beta0" = 0, "beta[1]" = 0, "beta[2]" = 0, "beta[3]" = 0, "beta[4]" = 0,
"beta[5]" = 0, "tau" = NA , check.names=FALSE)
 }
  else
  {
    parameters=writeModel(model ="exp", informative=informative, filename=filename, beta1Sens=beta1Sens,
beta2Sens=beta2Sens, beta4Sens=beta4Sens, beta5Sens=beta5Sens)
    AcodaSample=callParaRun(isExp=TRUE, filename=filename, saveFile=saveFile, parameters, dataList,
initsList, nChains, adaptSteps, burnInSteps, numSavedSteps, thinSteps)
   compVal <- data.frame("beta0" = 0, "beta[1]" = 0, "beta[2]" = 0, "beta[3]" = 0, "beta[4]" = 0.
"beta[5]" = 0, check.names=FALSE)
 }
  summaryInfo <- smryMCMC HD(codaSamples=AcodaSample , compVal = compVal)</pre>
  print(summaryInfo)
  if(isExp==FALSE)
  {
    plotMCMC HD( codaSamples = AcodaSample , data = myData,
xName=c("Area", "Bedrooms", "Bathrooms", "CarParks", "PropertyType") ,
                 yName="SalePrice.100K.", compVal = compVal, pairsPlot=TRUE, isExp=FALSE)
  }
  else
  {
    plotMCMC HD( codaSamples = AcodaSample, data = myData,
xName=c("Area", "Bedrooms", "Bathrooms", "CarParks", "PropertyType"),
                 yName="SalePrice.100K.", compVal = compVal, pairsPlot=TRUE, isExp=TRUE)
  }
  saveRDS(summaryInfo, paste(("summryInfo "), saveFile))
  return(summaryInfo)
}
```

[A7] Running sample dataset

```
y = mySample[,"SalePrice.100K."]
x = as.matrix(mySample[,c("Area", "Bedrooms", "Bathrooms", "CarParks", "PropertyType")])
xPred = array(NA, dim = c(5,5))
xPred[1,] = c(600, 2, 2, 1, 1)
xPred[2,] = c(800, 3, 1, 2, 0)
xPred[3,] = c(1500, 2, 1, 1, 0)
xPred[4,] = c(2500, 5, 4, 4, 0)
xPred[5,] = c(250, 3, 2, 1, 1)
dataList <- list(</pre>
 \mathbf{X} = \mathbf{X},
 y = y,
 xPred = xPred,
 Nx = dim(x)[2],
 Ntotal = dim(x)[1]
)
adaptSteps = 2000 # Number of steps to "tune" the samplers
burnInSteps = 3000
nChains = 3
```

thinSteps = 20 # First run for 3
numSavedSteps = 2000

[A7i] Running sample dataset for exponential model

```
# First run without initials! - for exponential
initsList <- list(
   zbeta0 = 2,
   zbeta = c(20, 0, 0, 0, 0)
)</pre>
```

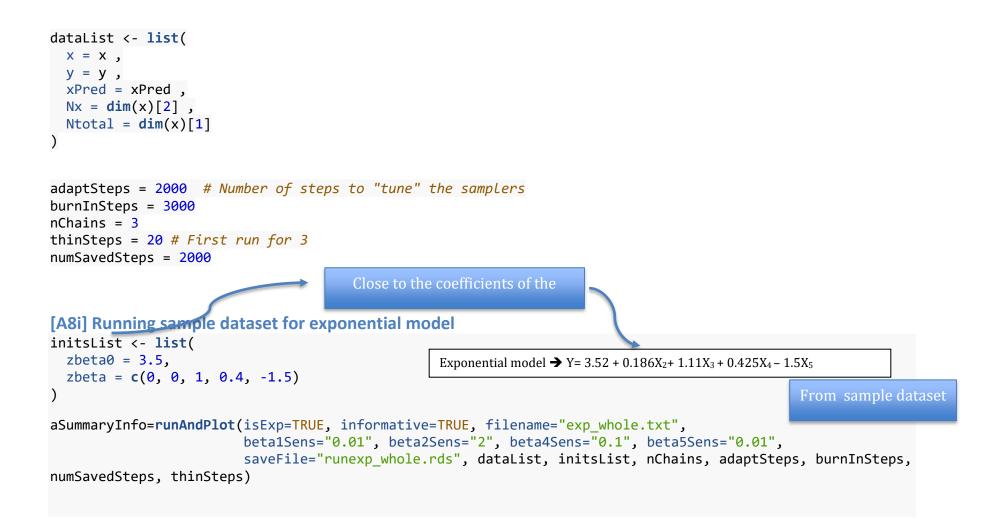
```
aSummaryInfo=runAndPlot(isExp=TRUE, informative=TRUE, filename="exp_1.txt",
beta1Sens="0.01", beta2Sens="2", beta4Sens="0.1", beta5Sens="0.01",
saveFile="runexp_1.rds", dataList, initsList, nChains, adaptSteps, burnInSteps, num
SavedSteps, thinSteps)
```

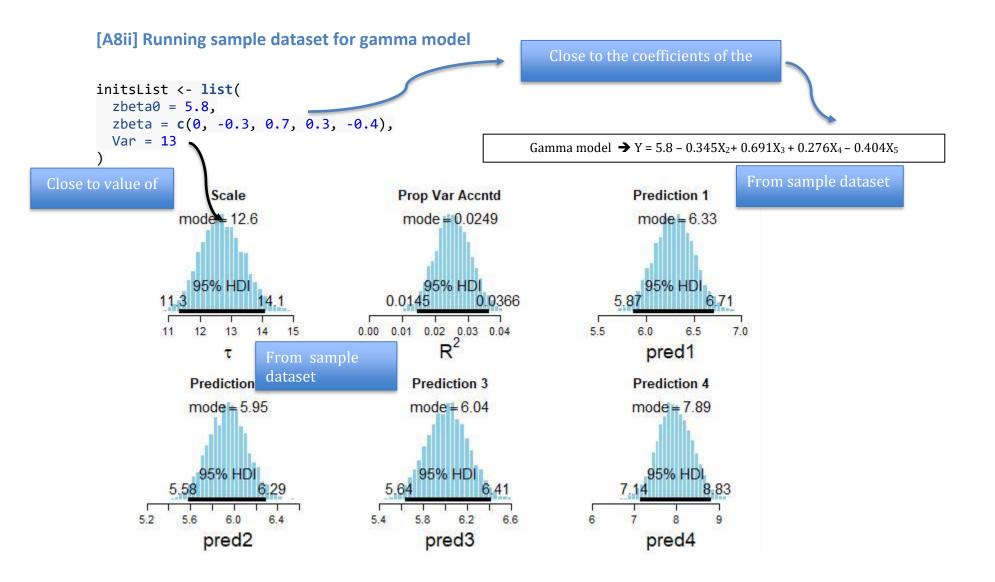
[A7ii] Running sample dataset for gamma model

[A8] Running full dataset

```
y = myData[,"SalePrice.100K."]
x = as.matrix(myData[,c("Area","Bedrooms","Bathrooms","CarParks", "PropertyType")])
```

xPred = array(NA, dim = c(5,5))
xPred[1,] = c(600, 2, 2, 1, 1)
xPred[2,] = c(800, 3, 1, 2, 0)
xPred[3,] = c(1500, 2, 1, 1, 0)
xPred[4,] = c(2500, 5, 4, 4, 0)
xPred[5,] = c(250, 3, 2, 1, 1)





[A9] Goodness of fit

[A9i] exponential model

```
coefficients <- aSummaryInfo[8:13,3] # Get the model coefficients out
Variance <- aSummaryInfo[14,3] # Get the variance out
# Since we imposed the regression model on the mean of the gamma likelihood,
# we use the model (X*beta) to generate the mean of gamma population for each
# observed x vector.
meanExp <- as.matrix(cbind(rep(1,nrow(x)), x)) %*% as.vector(coefficients)
# Generate random data from the posterior distribution. H ere I take the
# reparameterisation back to alpha and beta.
randomData <- rexp(n= 1000, rate=1/meanExp)</pre>
```

```
# Display the density plot of observed data and posterior distribution:
predicted <- data.frame(price = randomData)
observed <- data.frame(price = y)
predicted$type <- "Predicted"
observed$type <- "Observed"
dataPred <- rbind(predicted, observed)
hist(observed$price, breaks=40)
hist(predicted$price, breaks=40)
```

```
ggplot(dataPred, aes(price, fill = type)) + geom_density(alpha = 0.2)
ggplot(dataPred, aes(price, fill = type)) + geom_histogram(bins=40, color="#e9ecef", alpha=0.4)
```

```
ggplot(dataPred, aes(x = price)) +
```

[A9ii] gamma model

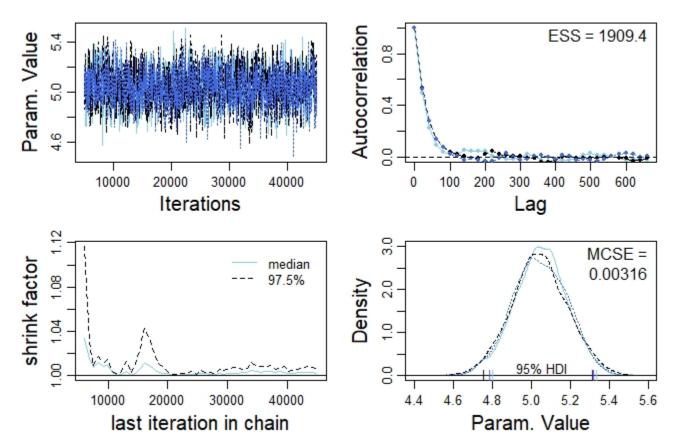
```
coefficients <- aSummaryInfo[8:13,3] # Get the model coefficients out
Variance <- aSummaryInfo[14,3] # Get the variance out
# Since we imposed the regression model on the mean of the gamma likelihood,
# we use the model (X*beta) to generate the mean of gamma population for each
# observed x vector.
```

```
meanGamma <- as.matrix(cbind(rep(1,nrow(x)), x)) %*% as.vector(coefficients)
# Generate random data from the posterior distribution. Here I take the
# reparameterisation back to alpha and beta.
randomData <- rgamma(n= 10000,shape=meanGamma^2/Variance, rate = meanGamma/Variance)</pre>
```

scale_fill_manual(values = c("#00AFBB", "#E7B800"))

[A10] Diagnostic plots of gamma model on full dataset.

Figure 26 - diagnostic plot of beta0 (Intercept) of gamma model on full run



beta0

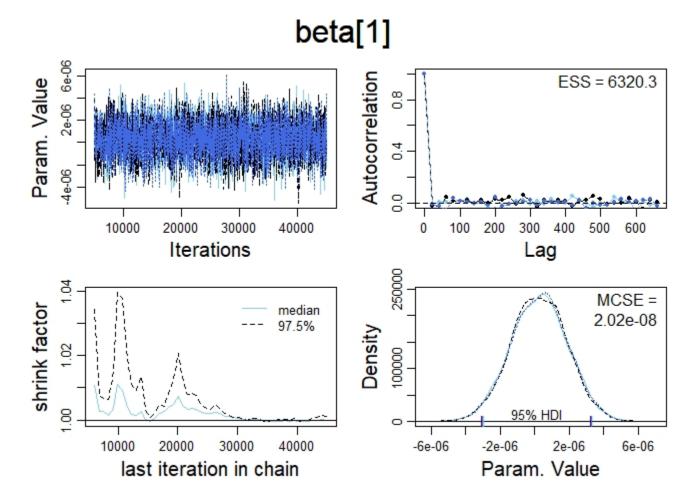


Figure 27 - diagnostic plot of beta1 (area) of gamma model on full run

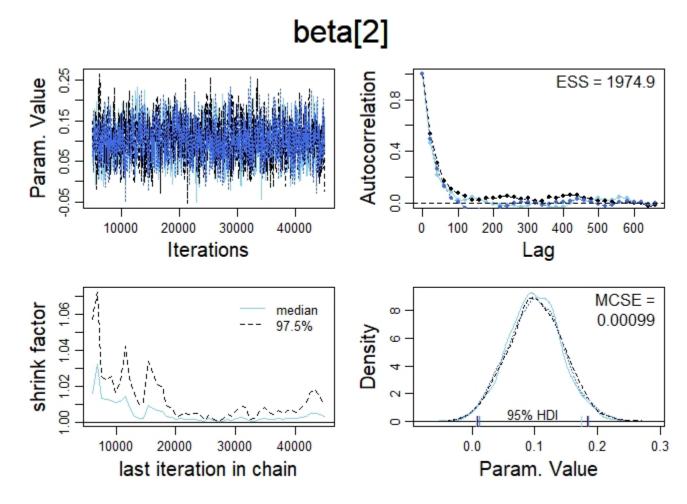


Figure 28 - diagnostic plot of beta2 (bedrooms) of gamma model on full run

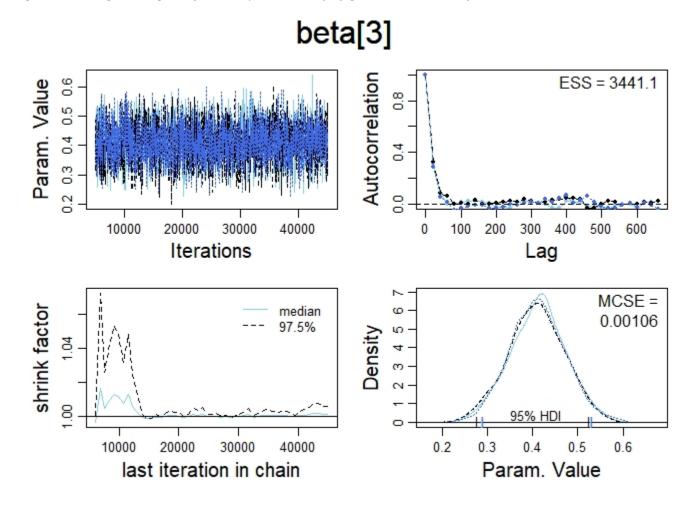


Figure 29- diagnostic plot of beta3 (bathrooms) of gamma model on full run

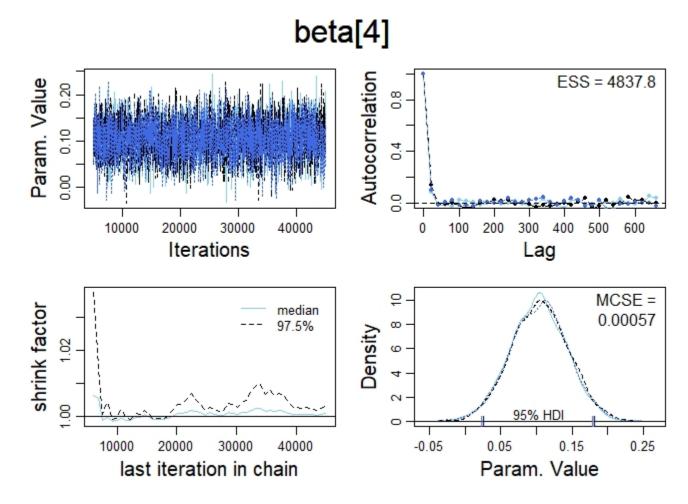


Figure 30- diagnostic plot of beta4 (carparks) of gamma model on full run

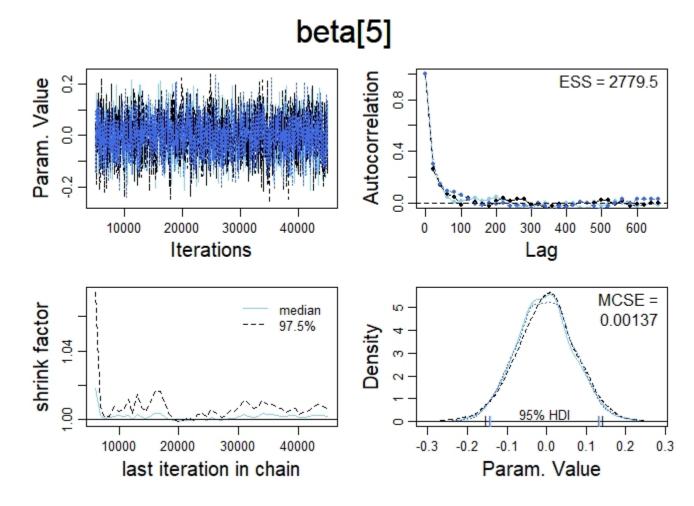


Figure 31- diagnostic plot of beta5 (property type) of gamma model on full run

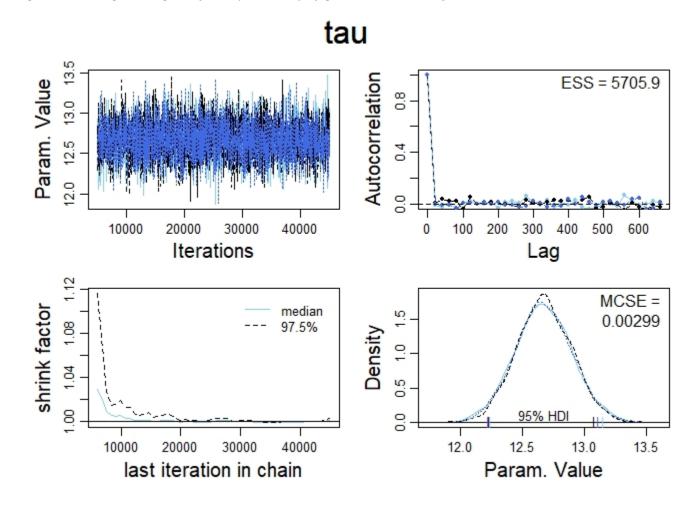


Figure 32 - diagnostic plot of tau (variance) of gamma model on full run

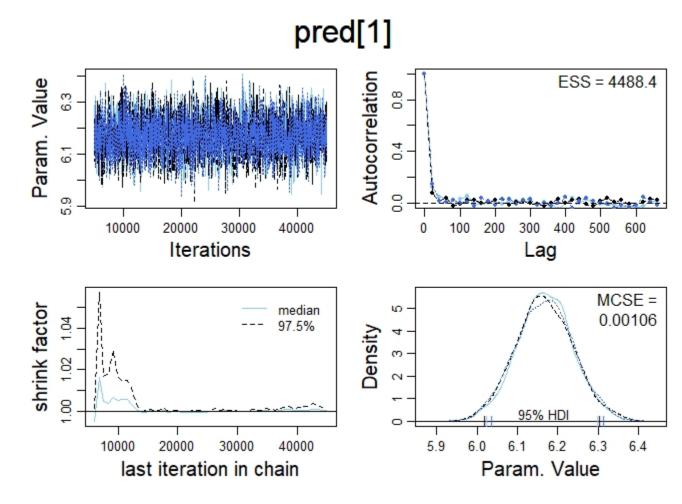


Figure 33 - diagnostic plot of prediction 1 of gamma model on full run

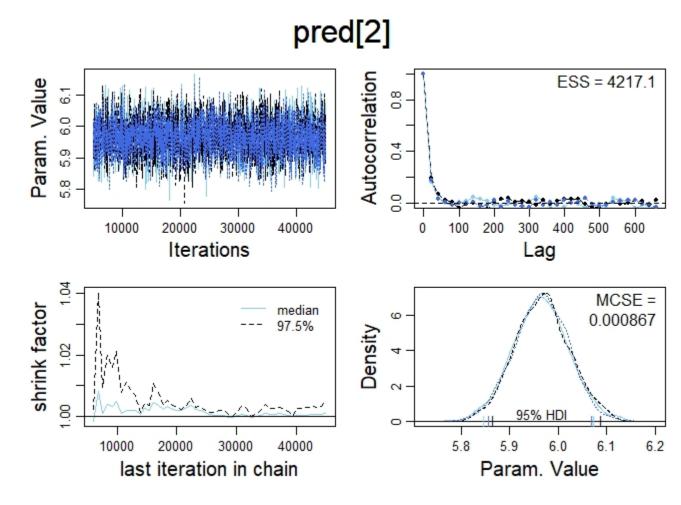


Figure 34 - diagnostic plot of prediction 2 of gamma model on full run

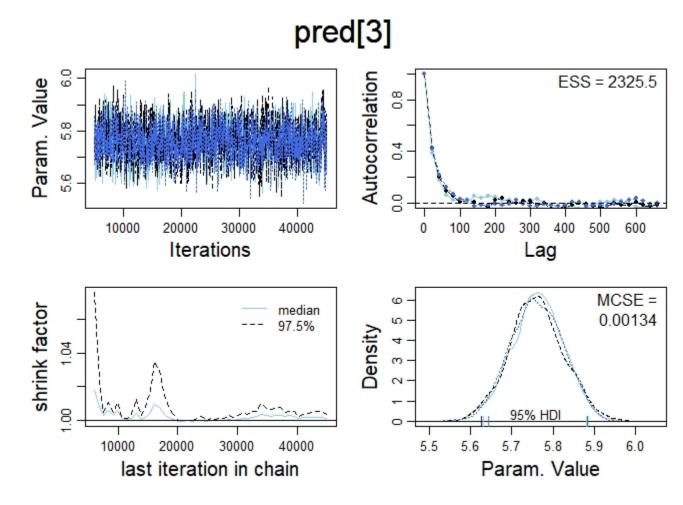


Figure 35 - diagnostic plot of prediction 3 of gamma model on full run

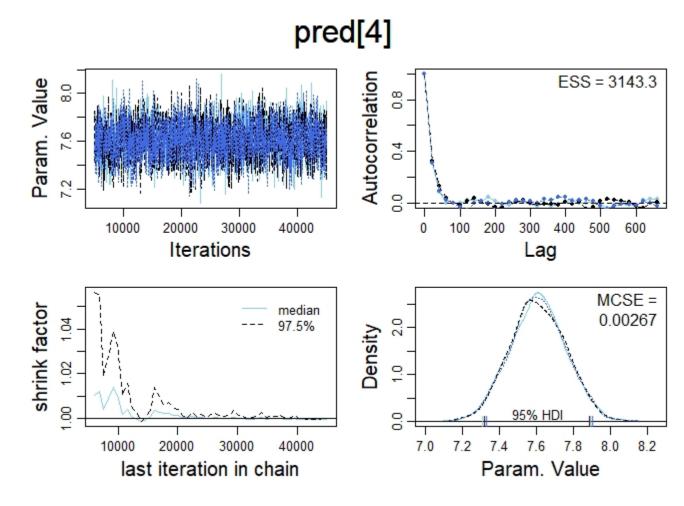


Figure 36 - diagnostic plot of prediction 4 of gamma model on full run

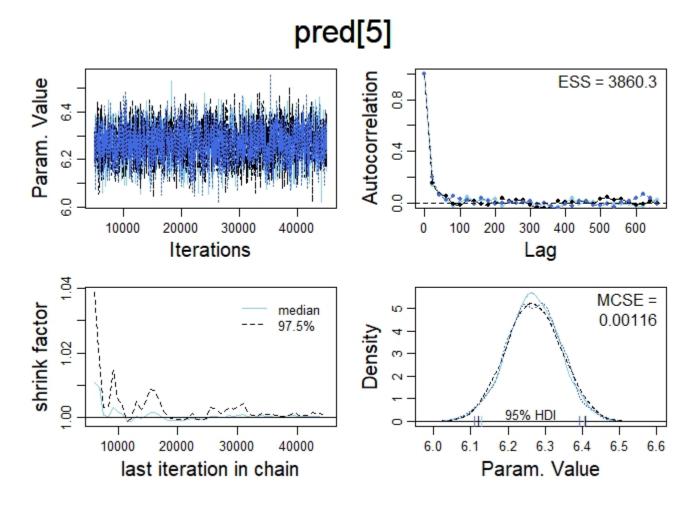
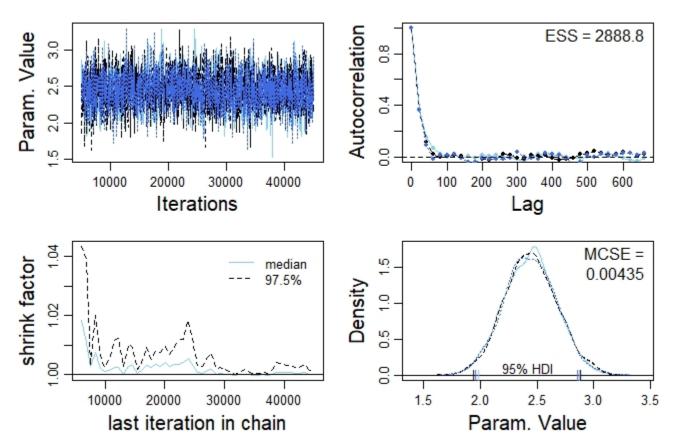


Figure 37 - diagnostic plot of prediction 5 of gamma model on full run

[A11] Diagnostic plots of exponential model on full dataset.

Figure 38 - diagnostic plot of beta0 (Intercept) of exponential model on full run



beta0

Figure 39 - diagnostic plot of beta1 (Area) of exponential model on full run

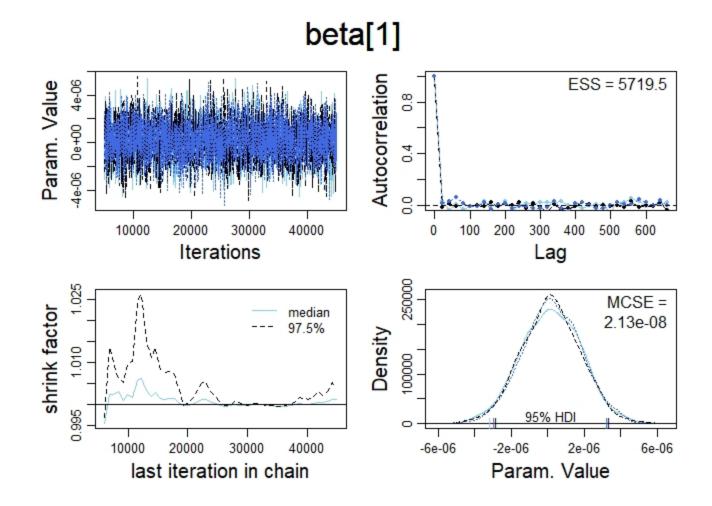


Figure 40 - diagnostic plot of beta2 (bedrooms) of exponential model on full run

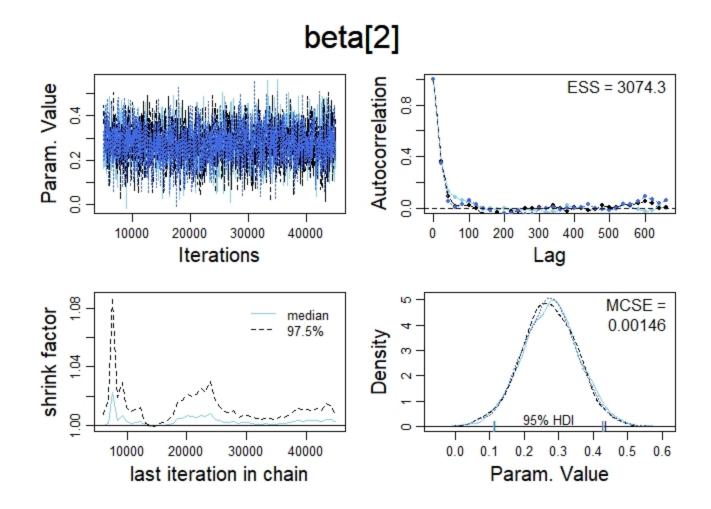


Figure 41 - diagnostic plot of beta3 (bathrooms) of exponential model on full run

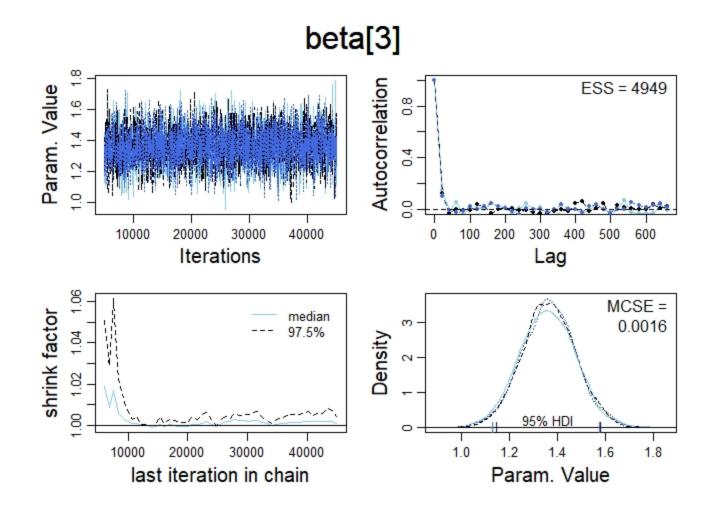
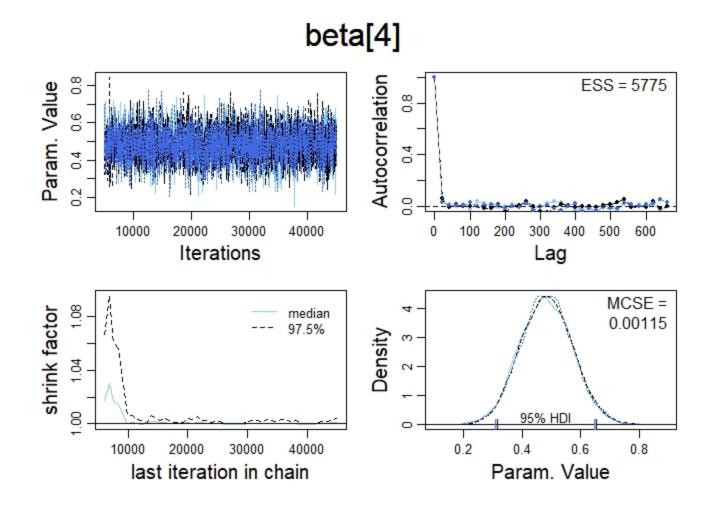


Figure 42 - diagnostic plot of beta4 (Carparks) of exponential model on full run



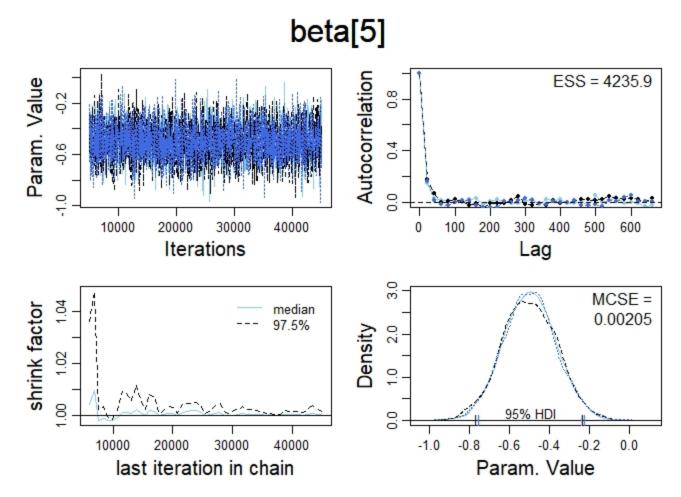


Figure 43 - diagnostic plot of prediction 1 of exponential model on full run

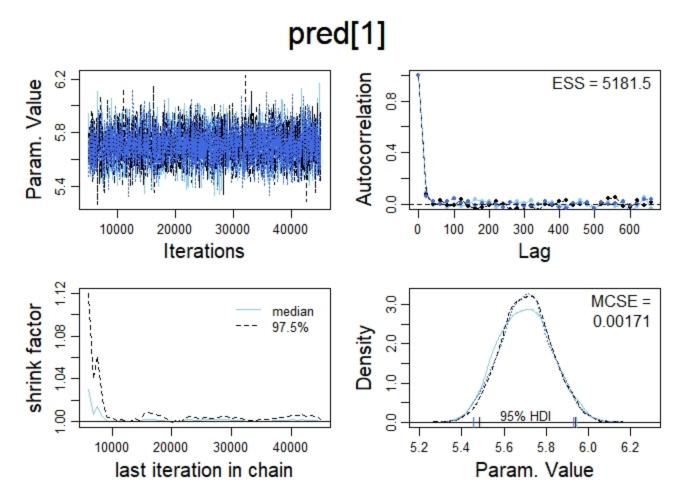


Figure 44 - diagnostic plot of prediction 2 of exponential model on full run

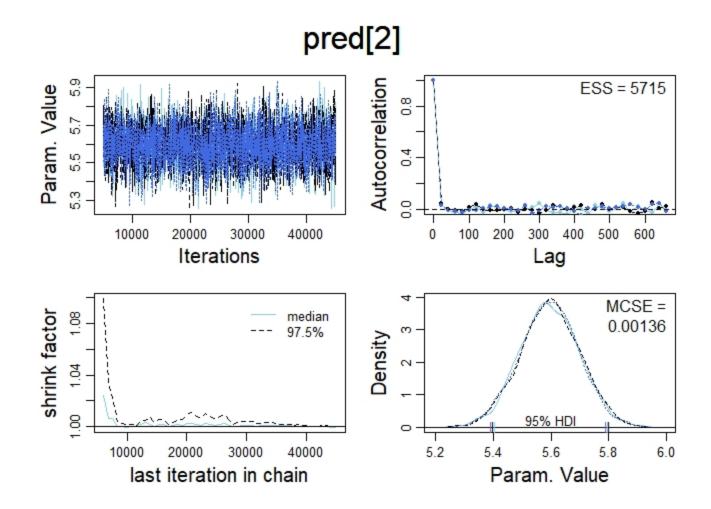


Figure 45 - diagnostic plot of prediction 3 of exponential model on full run

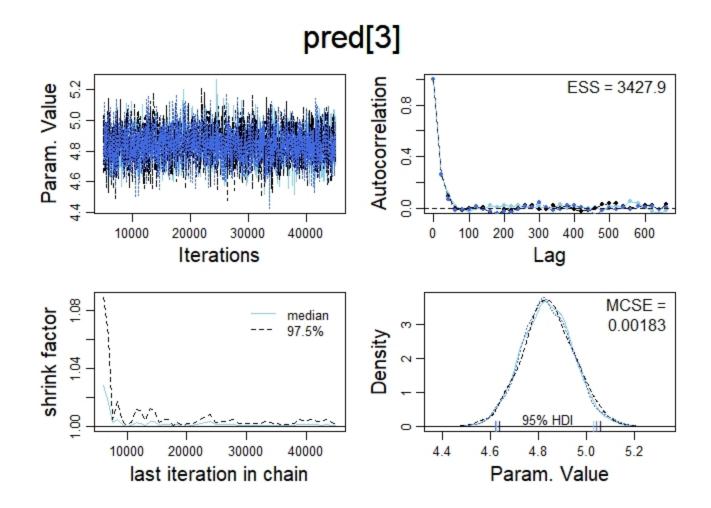


Figure 46 - diagnostic plot of prediction 4 of exponential model on full run

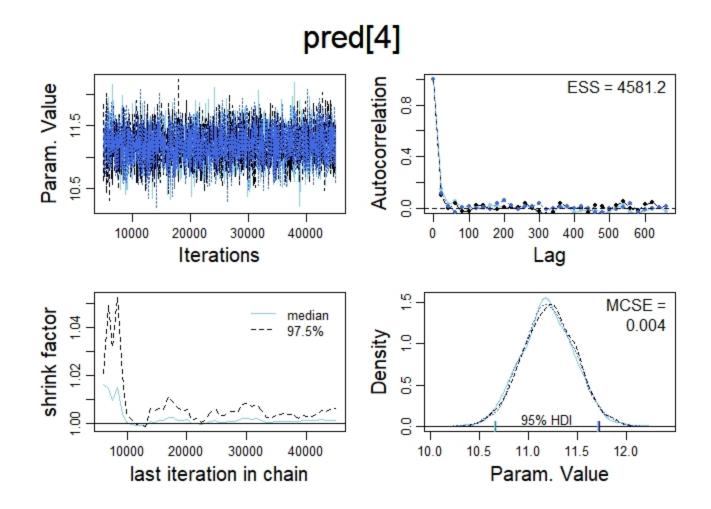


Figure 47 - diagnostic plot of prediction 5 of exponential model on full run

