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1. Introduction

In this assignment, we are using Bayesian analysis to draw statistical inference on the mean
and variance of Melbourne properties sales price. A datafile of sale price of properties in
Melbourne (in AUD $100,000) is given to us as the population data of this analysis. We
would be making Bayesian inferences with/without any informative prior knowledge and
model the distribution of sales price using the provided apps <Gibbs sampling for the
normal-gamma model>and document our findings in this report.

2. Background of the modelling, distributions and apps

i. Mathematical modelling

The following mathematical distributions are used to model the data we collected and the
parameters of interest.

1. X~ Normal(y, 1), collected data of the current Melbourne properties sales price, the
likelihood for us to build our posterior model. We are interested in 2 parameters,
mean (p ) and variance(t), from the dataset, since there are 2 parameters of interest,
we would not have any conjugate prior settings, but we can use Gibbs sampling to
model these parameters jointly to obtain posterior distributions.

2. p~ Normal(po, To), mean of the sales price is a continuous parameter, since we have
both prior knowledge (AUD$ 750K) and degree of belief (high) for the mean, we
need to use a 2-parameter distributions to model it. The domain of p is [0, +o0],
since the variance of p is small and finite, we could still use the normal distribution
[-00, +00] for modelling.

3. Tt ~ Gamma(a, ), variance of the sales price is a continuous parameter, since we
have both prior knowledge (standard deviation of AUD$ 600K ) and degree of belief
(high) in the variance, we need to use a 2-parameter distributions to model it. The
domain of t is [0, +o], gamma distribution is perfect for modelling.

The posterior with normal likelihood, normal prior on p and gamma prior on T is not
mathematically tractable, thus we need to use Gibbs sampling to conduct the posterior
model. For the normal prior and gamma prior, we have to model the prior knowledge
as the location (mean) and degree of belief as the dispersion (variance or standard
deviation) in the distribution.

ii. Summary statistics of the normal likelihood

Please note, for easy interpretation, from this point onwards, all the figures being
mentioned would be in the unit of AUD $100,000 (e.g. 6.9 is equivalent to AUD$609,000)


https://rmit.instructure.com/courses/67066/files/13500861?fd_cookie_set=1
https://rmit.instructure.com/courses/67066/files/13500861/download?wrap=1
https://rmit.instructure.com/courses/67066/files/13500861/download?wrap=1

Refer to Table 1, it shows the mean of properties price is 6.09, with a standard deviation of
5.12, highest price at 70.0 and lowest price at 2.0. The median (4.50) is less than the mean,
and Q1 at 3.50 and Q3 at 6.55, which both indicate the collected data is right skewed.

There are only 10,000 observations in the dataset. (Refer to [A1] and [AZ] on the R codes.)

Table 1 - Summary statistics on Melbourne properties sales price (In AUD$ 100,000)

## Descriptive Statistics
## house$price

## N: 106000

H#

i Mean Median std.Dev Q1 Q3 IQR Min Max
TH ceommmemeco coomes oo sssccccoo comoss cocees —ooseo coomos —o—eees
## pr‘ice 6.09 4,58 5.12 3.50 6.55 3.85 2.00 70.08

We can use a histogram to visualise this dataset and fit into a normal distribution curve, the
distribution is highly right-skewed as shown in Figure 1. (Refer to [A3] on the R codes.)

Figure 1 - Distribution of likelihood

Histogram of Melbourne properties sales price in AUD$100,000
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iii. Normal prior on p

For all distribution, decrease in variance (or standard deviation <SD>, which is the square
root of variance) will increase concentration which will generate a more informative prior.
This is more illustrative for normal distribution, as we have the mean (location of the prior)
as the point in x-axis of the graph and variance (dispersion of the prior) is showing directly
as the width of the curve, from Figure 2, the curve is more flatten (thus, less concentrated
and less informative) when variance is 7 (in red) compare to variance is 1 (in blue). (Refer
to [A4] on the R codes.)

Figure 2 - Normal prior on y with variance = 1 or 7
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iv. Gamma prioron Tt

For gamma distribution, it is not as simply illustrated as normal distribution, as mean and
variance are not shown directly from the plots. For example in Figure 4, when SD=15 (in
green), the curve is more flatten, but actually it has higher concentration compares to



SD=30 (in red), we are just mislead by the visual effect on the scale of the plot. If we plot
SD=15 (also in green) with SD=10 or SD=5 on the same graph as shown in Figure 3, we can
see SD=15 has high concentration when the y-axis drops from 12 to 1, and x-axis extends
from 2 to 120. Same applies to SD=5 (in blue), if we move the distribution into another plot
and shrink the scale in y-axis and increase the scale in x-axis, it would display SD=5 has the
highest concentration among all the other SDs being shown. (Refer to [A5] on the R codes.)

Thus,

Variance |, concentration T, degree of belief T

1Fi] 4-G { ith S.D. = 30,20 0r 15
lgure amma prioront wi or Figure 3 - Gamma prior on T with S.D. = 15,10 or 5

Gamma prior on = with different standard deviation = 15, 10 or 5
Gamma prior on t with standard deviation = 30, 20 or 15
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iv. Apps to model the posterior distribution
We need to use 2 apps to model the posterior distribution:

First, the Gamma Distribution Specified by Mean and Standard Deviation app is used to work
out the a and 3 of the gamma prior on t. When we input the prior knowledge of the
variance (we need to input variance instead of standard deviation as the mean of the
gamma distribution, because the second app is written to show population variance, refer
to Figure 6 point 4 & 5) of sales price (36, square of the standard deviation, which is given
as AUD$ 600,000 and is equivalent to 6 in the unit of AUD$100,000) as the location (mean)
of gamma prior on T, and the dispersion (standard deviation) of this gamma prior on T, this
apps will generate the respective a and 8 as shown in Figure 5 .

Figure 5 - The Gamma Distribution Specified by Mean and Standard Deviation app
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Second, the Gibbs sampling for the normal-gamma model app, we need to input the
followings in order to generate the posterior distribution:

1. Likelihood as the given csv file.

2. po, The location (mean) of normal prior on , would just be the prior knowledge of
the mean of sales price (7.5, which is AUD$ 750,000), it is the po of the Normal(po,
To) prior distribution.
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3. 7o, The dispersion (variance) of normal prior on y, it is denoted as 1o of the
Normal(po, To) prior distribution.

4. a, worked out from the first app.

5. B, also worked out from the first app.

And other comparison and tuning parameters as described below.

Figure 6 - The input parameters for the Gibbs sampling for the normal-gamma model app
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As we know that,

Posterior « Prior * Likelihood

If prior is less informative (less dominant), posterior will have the tendency to be shaped
towards likelihood, if prior is more informative (more dominant), posterior will tend to
follow prior.



Figure 7 - Comparing the mean from likelihood with the mean from prior knowledge

Histogram of Melbourne properties sales price below AUD$2,500,000
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Thus, if our posterior is not affected by the prior info, the mean would be very close to 6.09
(without rounding is 6.093602), standard deviation would be very close to 5.12 (without
rounding is 5.123238, variance is close to 5.1232382% = 26.24756).

We need to find out what is the degree of belief (in terms of variance) of our normal prior
on u to make the posterior mean jump from 6.09 towards 7.5 (as shown in Figure 7, refer to
[A6] on the R codes) and the degree of belief (in terms of standard deviation, then work out
a and f3) of our gamma prior on t to make the posterior variance jump from 26.24 to 36.

3. Steps to generate results

i. Non informative prior

[a] Simulation

[ have chosen the following values for my non-informative normal prior on p and gamma
on T as follows, parameters 1 — 10 are the input for the Gibbs sampling for the normal-
gamma model app, parameters A1 and A2 are the input for the Gamma Distribution Specified
by Mean and Standard Deviation app:
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Table 2 - Input parameters for non-informative prior

Parameters Values Reasons
1 o, The location (mean) of 7.5 This is given prior info on
normal prior on p mean
2 To, The dispersion 7 Simply rounding down 7.5 as
(variance) of normal prior an integer value to make a
on pu non-informative prior as this
is a relative big variance
compare to po (explained in
Figure 2), pending to adjust if
the posterior distribution is
too far away from parameter 5
Al The location (mean) of 36 The given prior info on
gamma prior on t standard deviation is 6, which
makes the variance = 36, use
this to generate parameter 3
and 4 as described in Figure 5
A2 The dispersion (standard 30 Simply rounding down 36 to
deviation) of gamma prior the closest tens value place to
ont make a non-informative prior
as this is a relative big S.D.
compare to 36, (explained in
Figure 4 and Figure 3), use this to
generate parameter 3 and 4 as
described in Figure 5, pending
to adjust if this is too far away
from parameter 6.
3 a of the gamma prior 1.44 Derived from step A1 and A2
4 B of the gamma prior 0.04 Derived from step Al and A2
5 Comparison value for 6.09 This is the mean value from
population mean likelihood
6 Comparison value for 26.24 This is the variance from
population variance likelihood
7 Number of chains 4 Default value, pending to
adjust after diagnostic check
8 Number of burn-in steps 100 My guess on the number of
samples that [ should
disregard before getting stable
into the high density region for
the posterior simulation,
pending to adjust after
diagnostic check
9 Number of saved steps 1000 My guess on the number of

samples that should be enough
for getting good results for




representativeness and
accuracy on the posterior
simulation, pending to adjust
after diagnostic check

10

Number of thinning steps 2

Default value, pending to
adjust if there is high
autocorrelation in the
diagnostic check

We would get 4 tabs after the simulation is done:

Tab 1. The posterior distributions (Figure 8)

Tab 2. The summary on the posterior distributions (Figure 9)

Figure 8 - posterior distribution of non-informative prior (first trial)
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Figure 9 - summary on posterior distribution of non-
informative prior (first trial)

Posterior distributions Summary Diagnostics for the mean, p

Diagnostics for the variance, T

Summary table for Bayesian estimates

a Median Mode ESS HDImass HDIlow HDIhigh CompVal

mu 6.096047 6.098157 6.119446 1000.0 ©.95 5.993286 6.190998 6.090

tau 26.249702 26.235436 26.209616 901.3 ©.95 25.519651 26.997451 26.245
PcntGtCompVal

mu 54.9
tau 48.3
Run

system elapsed
0.094 17.994

Figure 8 and Figure 9 show us that the mode and mean of the posterior distribution for p is
6.119 and 6.096047, mode and mean of the posterior distribution for t is 26.209 and
26.249702, probability is 45.1% for the posterior distribution for p to be less than 6.09,
and 54.9% to be higher than 6.09. Probability is 51.7% for the posterior distribution for t
to be less than 26.24, and 48.3% to be higher than 26.24.

95% of HDI interval shows that the probability of the posterior distribution for p will be in
between 5.9932 and 6.1909 is 0.95, the probability of the posterior distribution for t will
be in between 25.519 and 26.997 is 0.95. If we change parameter 5 and 6 (refers to Table
2) to the value of the prior info. Refer to Figure 11 and Figure 10, probability is 0% for the
posterior distribution on p and t to be greater 7.5 and 36 respectively.



Figure 11 - posterior distribution of non-informative prior (first trial)
compare with prior information
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Figure 10 - summary of posterior distribution of non-
informative prior (first trial) compare with prior

information

Posterior distributions Summary

Diagnostics for the variance, T

Summary table for Bayesian estimates

Mean Median Mode
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mu °
tau ]
Run Time
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Diagnostics for the mean, p

ESS HDImass
mu 6.09408 6.093616 6.090962 1000.0
tau 26.26201 26.259686 26.158238 851.9

HDIlow

HDIhigh CompVal
©.95 5.99539 6.192608
0.95 25.63888 27.004077

7.5
36.0

With this parameter settings, the mean and variance of posterior distribution is much
closer to the likelihood, and is far away from the prior knowledge. We could consider our
parameter 2 and A2 is larger enough to set the prior as non-informative.

Tab 3. Diagnostics for the normal prior on p (Figure 13)

Tab 4. Diagnostics for the gamma prior on t (Figure 12)

Figure 13 - Diagnostics for normal prior on u for non-
informative prior (first trial)
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Figure 12 - Diagnostics for the gamma prior on t for non-

informative prior (first trial)
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[b] Diagnostic Check in representativeness and accuracy

Figure 12 and Figure 13, tell us that:

1) for both normal prior on p and gamma prior on T, 4 chains are all overlapping for
the param values in the later iterations (top-left plot),

2) there are almost no autocorrelations in the chains (from the top-right plot), ESS is
close to number of saved steps, which implies we do not have to change the number
of thinning steps).

3) shrink factor is always less than 1.2 (lower-left plot), which implies there are no
orphaned or stuck chains

4) However, in the density plot (lower-right plot), the shape and HDI interval coverage
of different chains seem do not overlap very well. [ have tried to adjust Number of
burn-in steps and Number of saved steps to 500 and 5000, we get some significant
improvement as shown in Figure 14 and Figure 15.

Figure 14 - Diagnostics for normal prior on u for non-

informative prior (first trial) with increased steps Figure 15 - Diagnostics for the gamma prior on t for non-informative
prior (first trial) with increased steps
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ii. Informative prior

[a] Simulation
[ have run extensive trials in the apps with the following parameters to search for
informative priors:

Table 3 - parameters search for informative prior

Input values Posterior Results

s [Normat [Normal L0 RO amma - fGamma Jpurin- fsavea |CEEROC PR DR o ean fo [Boundof |Bound o
PTIOT Kol PTIOT To Mean |S.D prior « prior f Jin StepsfSteps HDI for p |HDIfor p |t HDI for t |HDI for t

1 7.5 7 36 30 144 0.04 100] 1000 6.096 5.993 6.191 26.25 25.52 26.997
2 7.5 7 36 30 144 0.04 500] 5000 6.095 5.993 6.191 26.255 25.503 26.98
3 7.5 7 36 20 3.24] 0.09 500] 5000 6.094 5.995 6.195 26.277 25.569 26.993
4 7.5 7 36 15 5.76 0.16 500] 5000 6.093 5.992 6.191 26.252 25.565 26.974
5 7.5 7 36 10 12.96 0.36 500] 5000 6.095 5.995 6.192 26.272 25.549 26.976
6 7.5 7 36 5 51.84 1.44 500] 5000 6.093 5.986 6.186 26.323 25.584 27.086
7 7.5 7 36 4.5 64| 1.778 500] 5000 6.094 5.995 6.194 26.359 25.678 27.102
8 7.5 7 36 4 81 2.25 500] 5000 6.094 5.997 6.192 26.374 25.655 27.118
9 7.5 7 36 3.5] 105.796] 2.939 500] 5000 6.093 5.991 6.189 26.389 25.641 27.133
10 7.5 7 36 3 144 4 500] 5000 6.095 5.993 6.191 26.457 25.764 27.205
11 7.5 7 36 2.5 207.36 5.76 500] 5000 6.096 5.99 6.193 26.541 25.839 27.263
12 7.5 7 36 2 324 9 500] 5000 6.095 5.99 6.188 26.705 25.973 27.447
13 7.5 7 36 15 576 16 500] 5000 6.096 5.982 6.191 27.045 26.367 27.791
14 7.5 7 36 1 1296 36 500 5000 6.093 5.988 6.195 27.88 27.172 28.587
15 7.5 7 36 0.5 5184 144 500 5000 6.093 5.98 6.196 30.827 30.17 31.458
16 7.5 1 36 0.5 5184 144 500] 5000 6.098 5.996 6.206 30.837 30.19 31.456
17 7.5 0.1 36 0.5 5184 144 500] 5000 6.136 6.033 6.248 30.829 30.166 31.441
18 7.5 0.01 36 0.5 5184 144 500] 5000 6.425 6.332 6.521 30.898 30.252 31.56
19 7.5 0.001 36 0.5 5184 144 500] 5000 7.161 7.106 7.215 31.485 30.811 32.13
20 7.5 0.005 36 0.5 5184 144 500] 5000 7.308 7.267 7.348 31.672 31.034 32.33
21 7.5] 0.0005 36 0.1] 129600 3600 500] 5000 7.328 7.286 7.367 35.690 35.506 35.880
22 7.5] 0.0005 36 0.1] 129600 3600f 2000{ 20000 7.327 7.287 7.370 35.692 35.504 35.886
23 7.5] 0.0001 36 0.1] 129600 3600f 2000{ 20000 7.462 7.442 7.480 35.705 35.523 35.905
24 7.5|] 0.00005 36 0.1] 129600 3600f 3000{ 30000 7.480 7.466 7.494 35.707 35.516 35.903

From Table 3, it shows that the posterior mean for p only go over 7 when the normal prior

10< 0.001 and t will go over 30 when gamma prior S.D. < 0.5. There is one interesting fact
that the HDI interval decreases when the prior become more informative. (e.g. HDI
interval for p is around 0.2 (6.191-5.993) at trial 1, and go down to 0.03 (7.494-7.466) at
trial 24, HDI interval for T is around 1.48 (26.997-25.52) at trial 1, and go down to 0.39
(35.903-35.516) at trial 24), All the diagnostic plots satisfy the requirements as stated on
page 13 until trial 21, we would discuss in details at case 2 of the diagnostic section.




Figure 16 - Posterior distribution of Informative prior (trial 24)
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Figure 16 and Figure 17, show us that the mode and mean of the posterior distribution for p is
7.480715 and 7.48097, mode and mean of the posterior distribution for t is 35.716885 and
35.706706, probability is 99.7% for the posterior distribution for p to be less than 7.5, and
0.3% to be higher than 7.5. Probability is 99.9% for the posterior distribution for t to be
less than 36, and 0.1% to be higher than 36.

95% of HDI interval shows that the probability of the posterior distribution for p will be in
between 7.466485 and 7.493935 is 0.95 (the difference between 7.5 and lower bound is
0.034, upper bound is 0.006), the probability of the posterior distribution for t will be in
between 35.5157 and 35.903470 (the difference between 36 and the lower bound is 0.484,
upper bound is 0.097) is 0.95.

Although there is a slight chance for the posterior distribution to go over 7.5 (for p) and 36
(for t), the 95% HDI interval still do not capture these values. I believe if we proceed
further with normal prior on po = 0.00001 and to = 0.05 (a=518400 and $=14400), we
could have a better capture for 95% HDI on p=7.5 and t=36. With limitation on resources
in running the online apps, and the upper bound is just 0.006 away from the prior info for p
and 0.097 away from prior info for t, we would now take trial 24 as our best posterior
model for informative prior.



[b] Diagnostic Check in representativeness and accuracy

For Informative prior, we would be discussing 3 diagnostic plots for the trials highlighted
in orange in Table 3.

Casel

For trial 24, referring to Figure 18 and Figure 19, the diagnostic plots tell us that:

1) for both normal prior on p and gamma prior on T, 4 chains are all overlapping for
the param values in the later iterations (top-left plot),

2) there are almost no autocorrelations in the chains (from the top-right plot), ESS is
close to number of saved steps, which implies we do not have to change the number
of thinning steps.

3) shrink factor is always less than 1.2 (lower-left plot), which implies there are no
orphaned or stuck chains

4) The density plot (lower-right plot) shows the shape and HDI interval coverage of
different chains overlap very well and converge.

Figure 18 - Diagnostics for normal prior on u for informative
prior (trial 24) Figure 19 - Diagnostics for the gamma prior on T for
- informative prior (trial 24)
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But before we got these good diagnostic plots, we were using 2000 and 20,000 as the
number of burn-in steps and number of saved steps for trial 24 (We call this trial 24a). It
seems the chains are overlapping in the top-left and right bottom plot (refers to Figure 21 and
Figure 20). However, the ESS samples is 9414.6 for p and 8798.3 for t, which are only around
half of the number of saved steps (20,000).

Figure 21 - Diagnostics for normal prior on p for informative

prior (trial 24) with not enough iterations Figure 20 - Diagnostics for the gamma prior on t for

informative prior (trial 24) with not enough iterations
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Also, the figures in the summary do not match with the numbers shown on the
distributions tab. (refers to rigure 23 and rigure 22) This misalignment is solved if we increase
the number of burn-in steps and number of saved steps to 3000 and 30,000 respectively.

Figure 23 - Posterior distribution of Informative prior
(trial 24) with not enough iterations

Figure 22 - summary of posterior distribution of informative prior
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Case 2
At trial 21, when we set the normal prior toto 0.0005 and gamma prior S.D. = 0.1 (a=
12960 and 3=3600), referring to Figure 25 and Figure 24, the diagnostic plots tell us that:

1) for both normal prior on p and gamma prior on T, 4 chains do not overlap or
converge for the param values in the later iterations (top-left plot),

2) there are significant autocorrelations in the chains (from the top-right plot), ESS is
only 50, which is so low compare to the number of saved steps (5,000)

3) shrink factor plot (lower-left plot) did not come up, which implies the shrink factor
is too large to be displayed on the app.

4) The density plot (lower-right plot) shows the shape and HDI interval coverage of
different chains do not overlap.

Figure 25 - Diagnostics for normal prior on y for trial 21
Figure 24 - Diagnostics for the gamma prior on t for trial 21
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Thus we increased the Number of burn-in steps and Number of saved steps to 2000 and
20,000, and we get some significant improvement for trial 22 as shown in Figure 26 and
Figure 27.



Figure 27 - Diagnostics for normal prior on u for trial

22
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Figure 26 - Diagnostics for the gamma prior on T
for trial 22
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i. Hypothesis test for non-Informative prior

Refer to Figure 28 and Figure 29, 95% HDI do not capture 8.5 as the pand 9 as the t (standard
deviation = 3) for non-informative prior, thus we reject the null hypothesis that the mean
sales price is 850,000 AUD and the standard deviation is 300,000 AUD.

Figure 28 - Posterior distribution of non-Informative
prior (trial 2) - compare to values of hypothesis tests
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ii. Hypothesis test for Informative prior

Refer to Figure 30 and Figure 31, 95% HDI do not capture 8.5 as the p and 9 as the t (standard
deviation = 3) for informative prior, thus we reject the null hypothesis that the mean sales
price is 850,000 AUD and the standard deviation is 300,000 AUD.

Figure 30 - Posterior distribution of Informative prior (trial 24)

- compare to values of hypothesis tests
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Figure 31 - summary of posterior distribution of informative
prior (trial 24) - compare to values of hypothesis test
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5. Discussion on Efficiency

We could decrease the number of saved steps to obtain a shorter run time, for example, in
trial 21, we observed poor diagnostic plots for saved steps =5000, and after trying to set
the saved steps=20,000, we could obtain excellent plots. Theoretically, we could fine tune
the saved steps by slowly decreasing 20,000 to get minimum run time with acceptable
diagnostic results, however, as the apps we are using is online, run-time might not be
consistent (refers to the cells highlighted in orange in Table 4, we noticed there are less
saved steps in trial 24a compare to trial 24, but the system run time is exceptionally high,
this also applies to the elapsed time for trial 22) for parameter tuning. Ibelieve we would
encounter a more stable platform by installing JAGS locally, which makes the platform
more reliable and consistent on tuning the efficiency of the posterior generation.

Table 4 - Runtime for different trials

Input values Run Time

. Normal | Normal Galmma Galmma Gamma |Gamma |Burin- |Saved
Trials . . prior |prior . . . User System Elapsed |Refers to
prior po[priorto | o prior a prior B |in Steps|Steps

21 7.5] 0.0005 36 0.1] 129600] 3600 500] 5000 66.652 0.016 66.751 Fig32

22 7.5] 0.0005 36 0.1] 129600f 3600 2000] 20000] 260.752 0.012] 634.433 Fig 33

24a 7.5] 0.00005 36 0.1] 129600f 3600 2000| 20000] 107.828 0.124] 295.605 Fig 22

24 7.5] 0.00005 36 0.1] 129600] 3600] 3000] 30000] 345.708 0.016] 399.689 Fig16

Figure 32 - Summary of posterior distribution which shows the runtime of trial 21
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Figure 33 - Summary of posterior distribution which shows the run time of trial 22
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6. Conclusion

In this assignment, we have learnt how to use Gibbs sampling to model population data
when there are 2 parameters (mean (u ) and variance(t)) of interest with Bayesian analysis
to perceive the theory of “Posterior « Prior * Likelihood”.

We first thoroughly investigated the mathematical model which we used to apply on the
data and parameter of interest, then we found out the nature of the mathematical model
(normal and gamma distribution), and how to apply the location and degree of belief in the
domain knowledge to generate informative / non-informative prior with given apps.
Finally, we observed how the posterior simulation will change from likelihood dominant to
prior dominant when we adjust the variance / standard deviation of the normal and
gamma prior distribution.

For both non-informative and informative prior, we reject the null hypothesis that the
mean sale price is AUD 850,000 and standard deviation is AUD 300,000.

Appendix
[A1] — Import packages and data preparation

#The following packages are needed in this assignment:

library(knitr)
library(summarytools)

library(dplyr)



house <- read.csv("D:/RMIT Master of Analytics/semester 3/MATH2269 Applied
Bayesian Statistics/Assignment 1/AssignmentlPropertyPrices.csv")

[A2] — Generate descriptive statistics

names (house)[1] <- "price"

descr(house, stats = c("mean", "med", "sd", "Q1", "Q3","IQR", "min", "max"),
transpose = TRUE)

[A3] — A histogram for the likelihood data

h <- house$price %>% hist(col="grey",xlab="Sales Price (100k)",
main="Histogram of Melbourne properties sales price in AUD$100,000",
breaks=100)

xfit<-seq(min(house$price),max(house$price),length=40)
yfit<-dnorm(xfit,mean=mean(house$price),sd=sd(house$price))
yfit <- yfit*diff(h$mids[1:2])*1length(house$price)
lines(xfit, yfit, col="blue", lwd=2)

abline(v=mean(house$price),col="red")
abline(v=median(house$price),col="orange")

legend (40, 1200, legend=c("mean", "median"),
col=c("red", "orange"), lty=1:2, cex=0.8)

[A4] — Showing the Effect on variance on normal distribution
##Distribution of normal prior on mu

x <- seq(@, 15, length=1000)

y <- dnorm(x, mean=7.5, sd=1)

plot(x, y, type="1", lwd=1, col="blue",
ylab="p(x)",main=expression(paste("Normal prior on
or 7")), xaxp=c(@,15, 15))

, mu, with variance = 1

curve(dnorm(x, mean=7.5, sd=sqrt(7)), add = TRUE, col = "red")
legend(0.5, 0.4, legend=c("mean=7.5, variance = 7", "mean=7.5, variance =
1",

col=c("red", "blue"), 1lty=1:2, cex=0.8)



[A5] — Showing the Effect on standard deviation on gamma

distribution
##Distribution of gamma prior on tau

X <- seq(@, 2, length=1000)
y <- dgamma(x = x, shape = 1.44, rate = 1/0.04)
plot(x, y, type="1", lwd=1, col="red", ylab="p(x)",

main=expression(paste("Gamma prior on ", tau, " with standard deviation = 30,
20 or 15")))

curve(dgamma(x = x, shape = 3.29, rate = 1/0.09), add = TRUE, col = "orange")
curve(dgamma(x = x, shape = 5.76, rate = 1/0.16), add = TRUE, col = "green")

legend(1, 10, legend=c("mean=36, SD = 30, alpha=1.44, beta=0.04", "mean=36,
SD = 20, alpha=3.29, beta=0.09",

"mean=36, SD = 15, alpha=5.76, beta=0.16"),
col=c("red", "orange", "green"),lty=1:2, cex=0.8)

X <- seq(@, 120, length=1000)
y <- dgamma(x = x, shape = 5.76, rate = 1/0.16)
plot(x, y, type="1", lwd=1, col="green", ylab="p(x)",
main=expression(paste("Gamma prior on ", tau, " with different standard
deviation = 15, 10 or 5")))
curve(dgamma(x = x, shape = 12.96, rate
"yellow")
curve(dgamma(x = x, shape = 51.84, rate = 1/1.44), add = TRUE, col = "blue")
legend(70, 0.9, legend=c("mean=36, SD = 15, alpha=5.76, beta=0.16", "mean=36,
SD = 10, alpha=12.96, beta=0.36",

"mean=36, SD = 5, alpha=51.84, beta=1.44"),
col=c("green", "yellow", "blue"),lty=1:2, cex=0.8)

1/0.36), add

TRUE, col =

[A6] — A histogram for the likelihood data with comparison on the p of

likelihood and prior info on pu
##Histogram of Likelihood

h <- house$price %>% hist(col="grey",xlab="Sales Price (100k)",
main="Histogram of Melbourne properties sales price below AUD$2,500,000 \n
(in the unit of AUD$100,000)", breaks=300, xaxp=c(0,25,25), xlim=c(0,25))

xfit<-seq(min(house$price),max(house$price),length=40)
yfit<-dnorm(xfit,mean=mean(house$price),sd=sd(house$price))
yfit <- yfit*diff(h$mids[1:2])*1length(house$price)
lines(xfit, yfit, col="blue", lwd=2)

abline(v=mean(house$price),col="red")
abline(v=7.5,col="green")



legend(16, 500, legend=c("mean from likelihood", "mean from prior
knowledge"),
col=c("red", "green"), 1lty=1:2, cex=0.8)
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