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1. Introduction 

In this assignment, we are using Bayesian analysis to draw statistical inference on the mean 
and variance of Melbourne properties sales price.  A datafile of sale price of properties in 
Melbourne (in AUD $100,000) is given to us as the population data of this analysis.  We 
would be making Bayesian inferences with/without any informative prior knowledge and 
model the distribution of sales price using the provided apps <Gibbs sampling for the 
normal-gamma model> and document our findings in this report. 

 

2. Background of the modelling, distributions and apps  

i. Mathematical modelling 

The following mathematical distributions are used to model the data we collected and the 
parameters of interest. 

1. X ~ Normal(μ, τ), collected data of the current Melbourne properties sales price, the 
likelihood for us to build our posterior model.  We are interested in 2 parameters, 
mean (μ ) and variance(τ), from the dataset, since there are 2 parameters of interest, 
we would not have any conjugate prior settings, but we can use Gibbs sampling to 
model these parameters jointly to obtain posterior distributions.    

2. μ ~ Normal(μ0, τ0), mean of the sales price is a continuous parameter, since we have 
both prior knowledge (AUD$ 750K) and degree of belief (high) for the mean, we 
need to use a 2-parameter distributions to model it.   The domain of μ is [0, +∞], 
since the variance of μ is small and finite, we could still use the normal distribution 
[-∞, +∞] for modelling.   

3. τ  ~ Gamma(α, β), variance of the sales price is a continuous parameter, since we 
have both prior knowledge (standard deviation of AUD$ 600K ) and degree of belief 
(high) in the variance, we need to use a 2-parameter distributions to model it.   The 
domain of τ is [0, +∞], gamma distribution is perfect for modelling. 

The posterior with normal likelihood, normal prior on μ and gamma prior on τ is not 
mathematically tractable, thus we need to use Gibbs sampling to conduct the posterior 
model.  For the normal prior and gamma prior, we have to model the prior knowledge 
as the location (mean) and degree of belief as the dispersion (variance or standard 
deviation) in the distribution.  

ii.  Summary statistics of the normal likelihood  
 
Please note, for easy interpretation, from this point onwards, all the figures being 
mentioned would be in the unit of AUD $100,000 (e.g. 6.9 is equivalent to AUD$609,000)  
 

https://rmit.instructure.com/courses/67066/files/13500861?fd_cookie_set=1
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Refer to Table 1, it shows the mean of properties price is 6.09, with a standard deviation of 
5.12, highest price at 70.0 and lowest price at 2.0.  The median (4.50) is less than the mean, 
and Q1 at 3.50 and Q3 at 6.55, which both indicate the collected data is right skewed.  
There are only 10,000 observations in the dataset.  (Refer to [A1] and [A2] on the R codes.) 
 
Table 1 - Summary statistics on Melbourne properties sales price (In AUD$ 100,000) 

 
 
We can use a histogram to visualise this dataset and fit into a normal distribution curve, the 
distribution is highly right-skewed as shown in Figure 1.  (Refer to [A3] on the R codes.) 
 
 
Figure 1 - Distribution of likelihood 

   



 
 

iii.  Normal prior on μ 
For all distribution, decrease in variance (or standard deviation <SD>, which is the square 
root of variance) will increase concentration which will generate a more informative prior.  
This is more illustrative for normal distribution, as we have the mean (location of the prior) 
as the point in x-axis of the graph and variance (dispersion of the prior) is showing directly 
as the width of the curve, from Figure 2, the curve is more flatten (thus, less concentrated 
and less informative) when variance is 7 (in red) compare to variance is 1 (in blue).  (Refer 
to [A4] on the R codes.) 

 

  

Figure 2 - Normal prior on μ with variance = 1 or 7 

 

iv.  Gamma prior on τ 
For gamma distribution, it is not as simply illustrated as normal distribution, as mean and 
variance are not shown directly from the plots.  For example in Figure 4, when SD=15 (in 
green), the curve is more flatten, but actually it has higher concentration compares to 



SD=30 (in red),  we are just mislead by the visual effect on the scale of the plot.   If we plot 
SD=15 (also in green) with SD=10 or SD=5 on the same graph as shown in Figure 3, we can 
see SD=15 has high concentration when the y-axis drops from 12 to 1, and x-axis extends 
from 2 to 120.  Same applies to SD=5 (in blue), if we move the distribution into another plot 
and shrink the scale in y-axis and increase the scale in x-axis, it would display SD=5 has the 
highest concentration among all the other SDs being shown.  (Refer to [A5] on the R codes.) 

 

Thus, 

 

 

 

 

 

 

  

Figure 3 - Gamma prior on τ with S.D. = 30, 20 or 15 

Variance ↓, concentration ↑, degree of belief ↑ 

 

Figure 4 - Gamma prior on τ with S.D. = 30, 20 or 15 
Figure 3 - Gamma prior on τ with S.D. = 15, 10 or 5 



iv.  Apps to model the posterior distribution  
We need to use 2 apps to model the posterior distribution: 

First, the Gamma Distribution Specified by Mean and Standard Deviation app is used to work 
out the α and β of the gamma prior on τ.  When we input the prior knowledge of the 
variance (we need to input variance instead of standard deviation as the mean of the 
gamma distribution,  because the second app is written to show population variance, refer 
to Figure 6 point 4 & 5 )  of sales price (36, square of the standard deviation, which is given 
as AUD$ 600,000 and is equivalent to 6 in the unit of AUD$100,000) as the location (mean) 
of gamma prior on τ, and the dispersion (standard deviation) of this gamma prior on τ, this 
apps will generate the respective α and β as shown in Figure 5  . 

Figure 5 - The Gamma Distribution Specified by Mean and Standard Deviation app 

 

 

Second, the Gibbs sampling for the normal-gamma model app, we need to input the 
followings in order to generate the posterior distribution: 

1. Likelihood as the given csv file. 
2. μ0, The location (mean) of normal prior on μ, would just be the prior knowledge of 

the mean of sales price (7.5, which is AUD$ 750,000), it is the μ0 of the Normal(μ0, 
τ0) prior distribution. 

1. Prior info on the 
variance of the sales price 

2. Degree of belief on the 
prior info on the variance 
of the sales price, this apps 
provided the input as 
standard deviation. 

https://rmit.instructure.com/courses/67066/files/13500861/download?wrap=1
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3. τ0, The dispersion (variance) of normal prior on μ, it is denoted as τ0 of the 

Normal(μ0, τ0) prior distribution. 
4. α, worked out from the first app. 
5. β, also worked out from the first app.  

And other comparison and tuning parameters as described below. 

Figure 6 - The input parameters for the Gibbs sampling for the normal-gamma model app 

 

 

As we know that, 

 

 

 

If prior is less informative (less dominant), posterior will have the tendency to be shaped 
towards likelihood, if prior is more informative (more dominant), posterior will tend to 
follow prior. 

Posterior   ∝   Prior  *  Likelihood 

 

1. Likelihood – input as 
csv file  

2. Prior info on the 
mean of sales price 

5. Comparison value for 
population mean, a parameter to 
adjust to position the Green line in 
the posterior distribution of mean 

3. Degree of belief on the prior 
info on the mean of the sales 
price, this apps provided the 
input as variance for the 
normal prior. 

 

4 & 5. Prior info on the variance 
of the sales price, this apps asked 
for α and β as the parameter of 
the gamma prior.  It’s also 
written for population variance 
instead of population standard 
deviation as the parameter of 
interest. 

 

9. Number of saved steps, a 
parameter to adjust on the number 
of iterations if there is problem in 
the representativeness and accuracy 
from the diagnostic output  (refers to 
Table 2 and [b] diagnostic check for 
further details)     

 

 

10. Number of thinning 
steps, a parameter to adjust 
if autocorrelation is too high 
(refers to Table 2 and [b] 
diagnostic check for further 
details)   

 

8. Number of burn-in steps, a 
parameter to adjust the burn-in 
steps if there is problem in the 
representativeness and accuracy 
from the diagnostic output  (refers 
to Table 2 and [b] diagnostic check for 
further details)  

7. Number of chains – As there is 
randomness in Gibbs sampling, this  
parameter enables us to generate sets of 
comparisons in the diagnostic output  
(refers to Table 2 and [b] diagnostic 
check for further details)   

 

6. Comparison value for 
population variance, a 
parameter to adjust to position 
the Green line in the posterior 
distribution of variance 

 



Figure 7 - Comparing the mean from likelihood with the mean from prior knowledge 

 

Thus, if our posterior is not affected by the prior info, the mean would be very close to 6.09 
(without rounding is 6.093602), standard deviation would be very close to 5.12 (without 
rounding is 5.123238, variance is close to 5.1232382 = 26.24756). 

We need to find out what is the degree of belief (in terms of variance) of our normal prior 
on μ to make the posterior mean jump from 6.09 towards 7.5 (as shown in Figure 7, refer to 
[A6] on the R codes) and the degree of belief (in terms of standard deviation, then work out 
α and β) of our gamma prior on τ to make the posterior variance jump from 26.24 to 36.   

3. Steps to generate results  

i. Non informative prior  

[a] Simulation 
 I have chosen the following values for my non-informative normal prior on μ and gamma 
on τ as follows, parameters 1 – 10 are the input for the Gibbs sampling for the normal-
gamma model app , parameters A1 and A2 are the input for the Gamma Distribution Specified 
by Mean and Standard Deviation app: 

https://rmit.instructure.com/courses/67066/files/13500861/download?wrap=1
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Table 2 - Input parameters for non-informative prior 

 Parameters Values Reasons 
1 μ0, The location (mean) of 

normal prior on μ 
7.5 This is given prior info on 

mean 
2 τ0, The dispersion 

(variance) of normal prior 
on μ 

7 Simply rounding down 7.5 as 
an integer value to make a 
non-informative prior as this 
is a relative big variance 
compare to μ0 (explained in 
Figure 2), pending to adjust if 
the posterior distribution is 
too far away from parameter 5 

A1 The location (mean) of 
gamma prior on τ 

36 The given prior info on 
standard deviation is 6, which 
makes the variance = 36, use 
this to generate parameter 3 
and 4 as described in Figure 5 

A2 The dispersion (standard 
deviation) of gamma prior 
on τ 

30 Simply rounding down 36 to 
the closest tens value place to 
make a non-informative prior 
as this is a relative big S.D. 
compare to 36, (explained in 
Figure 4 and Figure 3), use this to 
generate parameter 3 and 4 as 
described in Figure 5, pending 
to adjust if this is too far away 
from parameter 6. 

3 α of the gamma prior 1.44 Derived from step A1 and A2 
4 β of the gamma prior 0.04 Derived from step A1 and A2 
5 Comparison value for 

population mean 
6.09 This is the mean value from 

likelihood 
6 Comparison value for 

population variance 
26.24 This is the variance from 

likelihood 
7 Number of chains 4 Default value, pending to 

adjust after diagnostic check  
8 Number of burn-in steps 100 My guess on the number of 

samples that I should 
disregard before getting stable 
into the high density region for 
the posterior simulation, 
pending to adjust after 
diagnostic check  

9 Number of saved steps 1000 My guess on the number of 
samples that should be enough 
for getting good results for 



representativeness and 
accuracy on the posterior 
simulation, pending to adjust 
after diagnostic check 

10 Number of thinning steps 2 Default value, pending to 
adjust if there is high 
autocorrelation in the 
diagnostic check 

 

We would get 4 tabs after the simulation is done: 

Tab 1.  The posterior distributions (Figure 8) 

Tab 2. The summary on the posterior distributions (Figure 9) 

 

 

 

Figure 8 and Figure 9 show us that the mode and mean of the posterior distribution for μ is 
6.119 and 6.096047, mode and mean of the posterior distribution for τ is 26.209 and 
26.249702,  probability is 45.1% for the posterior distribution for μ  to be less than 6.09, 
and 54.9% to be higher than 6.09.  Probability is 51.7% for the posterior distribution for τ 
to be less than 26.24, and 48.3% to be higher than 26.24. 

95% of HDI interval shows that the probability of the posterior distribution for μ will be in 
between 5.9932 and 6.1909 is 0.95, the probability of the posterior distribution for τ will 
be in between 25.519 and 26.997 is 0.95.  If we change parameter 5 and 6 (refers to Table 
2) to the value of the prior info.  Refer to Figure 11 and Figure 10, probability is 0% for the 
posterior distribution on μ  and τ to be greater 7.5 and 36 respectively.  

Figure 8 - posterior distribution of non-informative prior (first trial) 

Figure 9 - summary on posterior distribution of non-
informative prior (first trial) 



 

 

 

With this parameter settings, the mean and variance of posterior distribution is much 
closer to the likelihood, and is far away from the prior knowledge.   We could consider our 
parameter 2 and A2 is larger enough to set the prior as non-informative. 

Tab 3. Diagnostics for the normal prior on μ (Figure 13) 

Tab 4. Diagnostics for the gamma prior on τ (Figure 12) 

 

 

 

Figure 11 - posterior distribution of non-informative prior (first trial) 
compare with prior information 

Figure 10 - summary of posterior distribution of non-
informative prior (first trial) compare with prior 
information 

Figure 13 - Diagnostics for normal prior on μ for non-
informative prior (first trial) Figure 12 - Diagnostics for the gamma prior on τ for non-

informative prior (first trial) 



 

[b] Diagnostic Check in representativeness and accuracy 
 

Figure 12 and Figure 13, tell us that: 

1) for both normal prior on μ and gamma prior on τ, 4 chains are all overlapping for 
the param values in the later iterations (top-left plot),  

2) there are almost no autocorrelations in the chains (from the top-right plot), ESS is 
close to number of saved steps, which implies we do not have to change the number 
of thinning steps).   

3) shrink factor is always less than 1.2 (lower-left plot), which implies there are no 
orphaned or stuck chains 

4) However, in the density plot (lower-right plot), the shape and HDI interval coverage 
of different chains seem do not overlap very well.   I have tried to adjust Number of 
burn-in steps and Number of saved steps to 500 and 5000, we get some significant 
improvement as shown in Figure 14 and Figure 15. 

 

 

  

Figure 14 - Diagnostics for normal prior on μ for non-
informative prior (first trial) with increased steps  Figure 15 - Diagnostics for the gamma prior on τ for non-informative 

prior (first trial) with increased steps 



ii. Informative prior  

[a] Simulation 
 I have run extensive trials in the apps with the following parameters to search for 
informative priors: 

Table 3 - parameters search for informative prior 

Trials
Normal 

prior μ0

Normal 

prior τ0

Gamma 

prior 

Mean

Gamma 

prior 

S.D

Gamma 

prior α

Gamma 

prior β

Burin-

in Steps

Saved 

Steps

Posterior 

Mean for 

μ

Lower 

Bound of 

HDI for μ

Upper 

Bound of 

HDI for μ

Posterior 

Mean for 

τ

Lower 

Bound of 

HDI for  τ

Upper 

Bound of 

HDI for  τ

1 7.5 7 36 30 1.44 0.04 100 1000 6.096 5.993 6.191 26.25 25.52 26.997

2 7.5 7 36 30 1.44 0.04 500 5000 6.095 5.993 6.191 26.255 25.503 26.98

3 7.5 7 36 20 3.24 0.09 500 5000 6.094 5.995 6.195 26.277 25.569 26.993

4 7.5 7 36 15 5.76 0.16 500 5000 6.093 5.992 6.191 26.252 25.565 26.974

5 7.5 7 36 10 12.96 0.36 500 5000 6.095 5.995 6.192 26.272 25.549 26.976

6 7.5 7 36 5 51.84 1.44 500 5000 6.093 5.986 6.186 26.323 25.584 27.086

7 7.5 7 36 4.5 64 1.778 500 5000 6.094 5.995 6.194 26.359 25.678 27.102

8 7.5 7 36 4 81 2.25 500 5000 6.094 5.997 6.192 26.374 25.655 27.118

9 7.5 7 36 3.5 105.796 2.939 500 5000 6.093 5.991 6.189 26.389 25.641 27.133

10 7.5 7 36 3 144 4 500 5000 6.095 5.993 6.191 26.457 25.764 27.205

11 7.5 7 36 2.5 207.36 5.76 500 5000 6.096 5.99 6.193 26.541 25.839 27.263

12 7.5 7 36 2 324 9 500 5000 6.095 5.99 6.188 26.705 25.973 27.447

13 7.5 7 36 1.5 576 16 500 5000 6.096 5.982 6.191 27.045 26.367 27.791

14 7.5 7 36 1 1296 36 500 5000 6.093 5.988 6.195 27.88 27.172 28.587

15 7.5 7 36 0.5 5184 144 500 5000 6.093 5.98 6.196 30.827 30.17 31.458

16 7.5 1 36 0.5 5184 144 500 5000 6.098 5.996 6.206 30.837 30.19 31.456

17 7.5 0.1 36 0.5 5184 144 500 5000 6.136 6.033 6.248 30.829 30.166 31.441

18 7.5 0.01 36 0.5 5184 144 500 5000 6.425 6.332 6.521 30.898 30.252 31.56

19 7.5 0.001 36 0.5 5184 144 500 5000 7.161 7.106 7.215 31.485 30.811 32.13

20 7.5 0.005 36 0.5 5184 144 500 5000 7.308 7.267 7.348 31.672 31.034 32.33

21 7.5 0.0005 36 0.1 129600 3600 500 5000 7.328 7.286 7.367 35.690 35.506 35.880

22 7.5 0.0005 36 0.1 129600 3600 2000 20000 7.327 7.287 7.370 35.692 35.504 35.886

23 7.5 0.0001 36 0.1 129600 3600 2000 20000 7.462 7.442 7.480 35.705 35.523 35.905

24 7.5 0.00005 36 0.1 129600 3600 3000 30000 7.480 7.466 7.494 35.707 35.516 35.903

Input values Posterior Results

 

From Table 3, it shows that the posterior mean for μ only go over 7 when the normal prior 
τ0 ≤ 0.001 and τ  will go over 30 when gamma prior S.D. ≤ 0.5.   There is one interesting fact 
that the HDI interval decreases when the prior become more informative.   (e.g. HDI 
interval for μ is around 0.2 (6.191-5.993) at trial 1, and go down to 0.03 (7.494-7.466) at 
trial 24,  HDI interval for τ is around 1.48 (26.997-25.52) at trial 1, and go down to 0.39 
(35.903-35.516) at trial 24), All the diagnostic plots  satisfy the requirements as stated on 
page 13 until trial 21, we would discuss in details at case 2 of the diagnostic section. 



 

 

 

Figure 16 and Figure 17, show us that the mode and mean of the posterior distribution for μ is 
7.480715 and 7.48097, mode and mean of the posterior distribution for τ is 35.716885 and 
35.706706,  probability is 99.7% for the posterior distribution for μ  to be less than 7.5, and 
0.3% to be higher than 7.5.  Probability is 99.9% for the posterior distribution for τ to be 
less than 36, and 0.1% to be higher than 36. 

95% of HDI interval shows that the probability of the posterior distribution for μ will be in 
between 7.466485 and 7.493935 is 0.95 (the difference between 7.5 and lower bound is 
0.034, upper bound is 0.006), the probability of the posterior distribution for τ will be in 
between 35.5157 and 35.903470 (the difference between 36 and the lower bound is 0.484, 
upper bound is 0.097) is 0.95.     

Although there is a slight chance for the posterior distribution to go over 7.5 (for μ) and 36 
(for τ), the 95% HDI interval still do not capture these values.   I believe if we proceed 
further with normal prior on μ0 = 0.00001 and τ0 = 0.05 (α=518400 and β=14400), we 
could have a better capture for 95% HDI on μ=7.5 and τ=36.  With limitation on resources 
in running the online apps, and the upper bound is just 0.006 away from the prior info for μ  
and 0.097  away from prior info for  τ , we would now take trial 24 as our best posterior 
model for informative prior. 

 

 

 

 

  

Figure 16 - Posterior distribution of Informative prior (trial 24) 

Figure 17 - Summary of Posterior distribution 
of Informative prior (trial 24) 



[b] Diagnostic Check in representativeness and accuracy 
 

For Informative prior, we would be discussing 3 diagnostic plots for the trials highlighted 
in orange in Table 3. 

Case 1 
 

For trial 24, referring to Figure 18 and Figure 19, the diagnostic plots tell us that: 

1) for both normal prior on μ and gamma prior on τ, 4 chains are all overlapping for 
the param values in the later iterations (top-left plot),  

2) there are almost no autocorrelations in the chains (from the top-right plot), ESS is 
close to number of saved steps, which implies we do not have to change the number 
of thinning steps.   

3) shrink factor is always less than 1.2 (lower-left plot), which implies there are no 
orphaned or stuck chains 

4) The density plot (lower-right plot) shows the shape and HDI interval coverage of 
different chains overlap very well and converge.    

 

 

 

 

 

 

 

 

 

 

  

Figure 18 - Diagnostics for normal prior on μ for informative 
prior (trial 24) Figure 19 - Diagnostics for the gamma prior on τ for 

informative prior (trial 24) 



But before we got these good diagnostic plots, we were using 2000 and 20,000 as the 
number of burn-in steps and number of saved steps for trial 24 (We call this trial 24a).    It 
seems the chains are overlapping in the top-left and right bottom plot (refers to Figure 21 and 
Figure 20).  However, the ESS samples is 9414.6 for μ and 8798.3 for τ, which are only around 
half of the number of saved steps (20,000). 

 

 

 

 

 

 

 

 

 

 

Also, the figures in the summary do not match with the numbers shown on the 
distributions tab.  (refers to Figure 23 and Figure 22) This misalignment is solved if we increase 
the number of burn-in steps and number of saved steps to 3000 and 30,000 respectively. 

 

 

 

  

 

 

 

 

 

 

Figure 21 - Diagnostics for normal prior on μ for informative 
prior (trial 24) with not enough iterations Figure 20 - Diagnostics for the gamma prior on τ for 

informative prior (trial 24) with not enough iterations 

Figure 23 - Posterior distribution of Informative prior 
(trial 24) with not enough iterations 

Figure 22 - summary of posterior distribution of informative prior 
(trial 24) with not enough iterations 



 

Case 2 
At trial 21, when we set the normal prior τ0 to 0.0005 and gamma prior S.D. = 0.1 (α= 
12960 and β=3600), referring to Figure 25 and Figure 24, the diagnostic plots tell us that: 

1) for both normal prior on μ and gamma prior on τ, 4 chains do not overlap or 
converge for the param values in the later iterations (top-left plot),  

2) there are significant autocorrelations in the chains (from the top-right plot), ESS is 
only 50, which is so low compare to the number of saved steps (5,000)  

3) shrink factor plot (lower-left plot) did not come up, which implies the shrink factor 
is too large to be displayed on the app. 

4) The density plot (lower-right plot) shows the shape and HDI interval coverage of 
different chains do not overlap.    

 

 

Thus we increased the Number of burn-in steps and Number of saved steps to 2000 and 
20,000, and we get some significant improvement for trial 22 as shown in Figure 26 and 
Figure 27. 

 

 

 

 

  

Figure 25 - Diagnostics for normal prior on μ for trial 21 

Figure 24 - Diagnostics for the gamma prior on τ for trial 21 



 

 

4. Analysis 

i. Hypothesis test for non-Informative prior  

Refer to Figure 28 and Figure 29, 95% HDI do not capture 8.5 as the μ and 9 as the τ (standard 
deviation = 3) for non-informative prior, thus we reject the null hypothesis that the mean 
sales price is 850,000 AUD and the standard deviation is 300,000 AUD. 

 

 

 

 

  

Figure 27 - Diagnostics for normal prior on μ for trial 
22 

Figure 26 -  Diagnostics for the gamma prior on τ 
for trial 22 

Figure 28 - Posterior distribution of non-Informative 
prior (trial 2) – compare to values of hypothesis tests 

Figure 29 - summary of posterior distribution of non-
informative prior (trial 2) – compare to values of hypothesis 
test 



ii. Hypothesis test for Informative prior  

Refer to Figure 30 and Figure 31, 95% HDI do not capture 8.5 as the μ and 9 as the τ (standard 
deviation = 3) for informative prior, thus we reject the null hypothesis that the mean sales 
price is 850,000 AUD and the standard deviation is 300,000 AUD. 

 

 

  

 

 

 

 

 

 

 

 

 

  

Figure 30 - Posterior distribution of Informative prior (trial 24) 
– compare to values of hypothesis tests 

Figure 31 - summary of posterior distribution of informative 
prior (trial 24) – compare to values of hypothesis test 



5. Discussion on Efficiency 

We could decrease the number of saved steps to obtain a shorter run time, for example, in 
trial 21, we observed poor diagnostic plots for saved steps =5000, and after trying to set 
the saved steps=20,000, we could obtain excellent plots.  Theoretically, we could fine tune 
the saved steps by slowly decreasing 20,000 to get minimum run time with acceptable 
diagnostic results, however, as the apps we are using is online, run-time might not be 
consistent (refers to the cells highlighted in orange in Table 4, we noticed there are less 
saved steps in trial 24a compare to trial 24, but the system run time is exceptionally high,  
this also applies to the elapsed time for trial 22)  for parameter tuning.   I believe we would 
encounter a more stable platform by installing JAGS locally, which makes the platform 
more reliable and consistent on tuning the efficiency of the posterior generation.      

 

Table 4 - Runtime for different trials 

Trials
Normal 

prior μ0

Normal 

prior τ0

Gamma 

prior 

Mean

Gamma 

prior 

S.D

Gamma 

prior α

Gamma 

prior β

Burin-

in Steps

Saved 

Steps
User System Elapsed Refers to

21 7.5 0.0005 36 0.1 129600 3600 500 5000 66.652 0.016 66.751 Fig 32

22 7.5 0.0005 36 0.1 129600 3600 2000 20000 260.752 0.012 634.433 Fig 33

24a 7.5 0.00005 36 0.1 129600 3600 2000 20000 107.828 0.124 295.605 Fig 22

24 7.5 0.00005 36 0.1 129600 3600 3000 30000 345.708 0.016 399.689 Fig 16

Input values Run Time

 

Figure 32 -  Summary of posterior distribution which shows the runtime of trial 21 

 

 



Figure 33 - Summary of posterior distribution which shows the run time of trial 22 

 

6. Conclusion 
In this assignment, we have learnt how to use Gibbs sampling to model population data 
when there are 2 parameters (mean (μ ) and variance(τ)) of interest with Bayesian analysis 
to perceive the theory of  “Posterior   ∝   Prior  *  Likelihood”. 

We first thoroughly investigated the mathematical model which we used to apply on the 
data and parameter of interest, then we found out the nature of the mathematical model 
(normal and gamma distribution), and how to apply the location and degree of belief in the 
domain knowledge to generate informative / non-informative prior with given apps.  
Finally, we observed how the posterior simulation will change from likelihood dominant to 
prior dominant when we adjust the variance / standard deviation of the normal and 
gamma prior distribution. 

For both non-informative and informative prior, we reject the null hypothesis that the 
mean sale price is AUD 850,000 and standard deviation is AUD 300,000.  

Appendix  

[A1] – Import packages and data preparation  

 

#The following packages are needed in this assignment: 
 
library(knitr) 

library(summarytools) 

library(dplyr) 

 
 



house <- read.csv("D:/RMIT Master of Analytics/semester 3/MATH2269 Applied 
Bayesian Statistics/Assignment 1/Assignment1PropertyPrices.csv") 
 

 

[A2] – Generate descriptive statistics 
names(house)[1] <- "price" 
descr(house, stats = c("mean", "med", "sd", "Q1", "Q3","IQR", "min", "max"), 
transpose = TRUE)  

 

[A3] – A histogram for the likelihood data 
h <- house$price %>% hist(col="grey",xlab="Sales Price (100k)", 
main="Histogram of Melbourne properties sales price in AUD$100,000", 
breaks=100) 
 
xfit<-seq(min(house$price),max(house$price),length=40) 
yfit<-dnorm(xfit,mean=mean(house$price),sd=sd(house$price)) 
yfit <- yfit*diff(h$mids[1:2])*length(house$price) 
lines(xfit, yfit, col="blue", lwd=2) 
 
abline(v=mean(house$price),col="red") 
abline(v=median(house$price),col="orange") 
 
legend(40, 1200, legend=c("mean", "median"), 
       col=c("red", "orange"), lty=1:2, cex=0.8) 

 

[A4] – Showing the Effect on variance on normal distribution 
##Distribution of normal prior on mu  
x <- seq(0, 15, length=1000) 
y <- dnorm(x, mean=7.5, sd=1) 
plot(x, y, type="l", lwd=1, col="blue", 
ylab="p(x)",main=expression(paste("Normal prior on ", mu, " with variance = 1 
or 7")), xaxp=c(0,15, 15)) 
 
curve(dnorm(x, mean=7.5, sd=sqrt(7)), add = TRUE, col = "red") 
legend(0.5, 0.4, legend=c("mean=7.5, variance = 7", "mean=7.5, variance = 
1"), 
       col=c("red", "blue"), lty=1:2, cex=0.8) 

 



[A5] –  Showing the Effect on standard deviation on gamma 
distribution 
##Distribution of gamma prior on tau  
 
x <- seq(0, 2, length=1000) 
y <- dgamma(x = x, shape = 1.44, rate = 1/0.04) 
plot(x, y, type="l", lwd=1, col="red", ylab="p(x)", 
main=expression(paste("Gamma prior on ", tau, " with standard deviation = 30, 
20 or 15"))) 
curve(dgamma(x = x, shape = 3.29, rate = 1/0.09), add = TRUE, col = "orange") 
curve(dgamma(x = x, shape = 5.76, rate = 1/0.16), add = TRUE, col = "green") 
legend(1, 10, legend=c("mean=36, SD = 30, alpha=1.44, beta=0.04", "mean=36, 
SD = 20, alpha=3.29, beta=0.09", 
                         "mean=36, SD = 15, alpha=5.76, beta=0.16"), 
col=c("red", "orange", "green"),lty=1:2, cex=0.8) 

x <- seq(0, 120, length=1000) 
y <- dgamma(x = x, shape = 5.76, rate = 1/0.16) 
plot(x, y, type="l", lwd=1, col="green", ylab="p(x)", 
main=expression(paste("Gamma prior on ", tau, " with different standard 
deviation = 15, 10 or 5"))) 
curve(dgamma(x = x, shape = 12.96, rate = 1/0.36), add = TRUE, col = 
"yellow") 
curve(dgamma(x = x, shape = 51.84, rate = 1/1.44), add = TRUE, col = "blue") 
legend(70, 0.9, legend=c("mean=36, SD = 15, alpha=5.76, beta=0.16", "mean=36, 
SD = 10, alpha=12.96, beta=0.36", 
                       "mean=36, SD = 5, alpha=51.84, beta=1.44"), 
col=c("green", "yellow", "blue"),lty=1:2, cex=0.8) 

 

 

[A6] – A histogram for the likelihood data with comparison on the μ of 
likelihood and prior info on μ 
##Histogram of likelihood 
 
h <- house$price %>% hist(col="grey",xlab="Sales Price (100k)", 
main="Histogram of Melbourne properties sales price below AUD$2,500,000 \n 
(in the unit of AUD$100,000)", breaks=300, xaxp=c(0,25,25), xlim=c(0,25)) 
 
xfit<-seq(min(house$price),max(house$price),length=40) 
yfit<-dnorm(xfit,mean=mean(house$price),sd=sd(house$price)) 
yfit <- yfit*diff(h$mids[1:2])*length(house$price) 
lines(xfit, yfit, col="blue", lwd=2) 
 
abline(v=mean(house$price),col="red") 
abline(v=7.5,col="green") 



 
legend(16, 500, legend=c("mean from likelihood", "mean from prior 
knowledge"), 
       col=c("red", "green"), lty=1:2, cex=0.8) 

 

 


	1. Introduction
	2. Background of the modelling, distributions and apps
	i. Mathematical modelling
	ii.  Summary statistics of the normal likelihood
	iii.  Normal prior on μ
	iv.  Gamma prior on τ
	iv.  Apps to model the posterior distribution

	3. Steps to generate results
	i. Non informative prior
	[a] Simulation
	[b] Diagnostic Check in representativeness and accuracy

	ii. Informative prior
	[a] Simulation
	[b] Diagnostic Check in representativeness and accuracy
	Case 1
	Case 2



	4. Analysis
	i. Hypothesis test for non-Informative prior
	ii. Hypothesis test for Informative prior

	5. Discussion on Efficiency
	6. Conclusion
	Appendix
	[A1] – Import packages and data preparation
	[A2] – Generate descriptive statistics
	[A3] – A histogram for the likelihood data
	[A4] – Showing the Effect on variance on normal distribution
	[A5] –  Showing the Effect on standard deviation on gamma distribution
	[A6] – A histogram for the likelihood data with comparison on the μ of likelihood and prior info on μ


